
JavaTESK: Introduction
version 2.0

 JavaTESK: Introduction

Introduction
In this document the process of tests development using JavaTESK tool is presented
on the example of the class that implements methods of bank account processing.

Before reading, it is recommended to familiarize with JavaTESK Installation Instruc-
tion.

From this point on, class that tests are developed for will be called target class and
testing methods of this class – target methods.

The example consists of the following parts:
• Target class description
• Project creation in the development environment
• Target class specification
• Mediator development
• Test scenario development
• Tests running and results analyzing

Target Class Description
For any bank account, two methods are defined: add money or withdraw it from an
account.

Data is constrained with the account balance. In addition, the maximum credit size is
given that determines the amount that balance can descend below zero.

Class Account that implements the above methods is included in the examples that
ship with JavaTESK, and it is located in the jatva.examples.account package.

Data of the class Account:

• public int balance — current balance of the account.

• static public int maximumCredit — the maximum size of the credit for the
given class.

Interface of the class Account consists of the following methods:
• Account() — constructor, creates bank account with zero balance;
• void deposit(int sum) — performs adding positive amount sum to the ac-

count, increases a balance by the given amount;
• int withdraw(int sum) — performs withdrawing of the positive amount sum

from the account, if the difference of the current balance and the amount sum
is lower than allowed credit size then the method returns sum, otherwise it re-
turns 0.

Project Creation in Development Environment
Project that contains target class Account, its requirements and tests is included in
JavaTESK delivery in the project account. To familiarize with it import the project to
Eclipse development environment. Select the command File/Import… in the

 2

 JavaTESK: Introduction

menu for this. Dialog Import will appear. Select General/Existing Pro-
jects into Workspace.

Figure 1. Select method of adding files to project.

 3

 JavaTESK: Introduction

Press Next button and dialog Import will change to allow selection of the folder with
the examples. Press Browse… button that corresponds to the field Select root direc-
tory.

The folder with the examples is located at JavaTESK installation directory: after find-
ing it, one should expand examples subfolder and select folder account as the target.
Then finish the import process by pressing OK button.

Figure 2. Select folder with example files for import.

 4

 JavaTESK: Introduction

After pressing OK, the environment will find project account at this folder. It is rec-
ommended to check Copy projects into workspace option to work with just copy of
the project and to guarantee inviolability of the example files.
After pressing Finish button the project will be imported.

Figure 3. Select folder with the example files to import.

 5

 JavaTESK: Introduction

Project is ready for work. Make sure that directory structure is like this:

Figure 4. Directory structure of the ready project.

Target Class Specification
UniTESK testing technology that is supported by JavaTESK assumes that target class
requirements are formulated in unambiguous form. This form of requirements repre-
sentation is called formal specification. It may be used for automated oracles genera-
tion. Oracle is a component of test system that checks correspondence between target
methods behavior and requirements for these methods. In JavaTESK formal specifica-
tions are developed using special language that is Java programming language exten-
sion. This language allows to describe functional requirements that determine the
functionality of the target methods, that is what these methods should do.

Specifications using JavaTESK language are very similar to the usual Java code. Ones
are described using special classes that are called specification classes and are located
in the files with extension .sej.

In our project there is ready specification class AccountSpecification. Let’s examine
its code located in the file AccountSpecification.sej. To open this file, double click
its icon in the Package Explorer window.

specification class AccountSpecification
{
 ...
}

Specification class differs with keyword specification from usual Java-class.

At the basis of the target class, data model is built and to store this model fields of
specification class are added. In this case, class correspondence is simple that is why

 6

 JavaTESK: Introduction

class AccountSpecification has the same fields — public int balance to store the ac-
count balance and static public int maximumCredit for the maximum credit.

Constraints on the methods behavior are described as the methods of specification
classes marked with the identifier specification. Such methods are called specifica-
tion methods. Usually, specification method describes the behavior of single target
method and has the same name.

Let’s look at specification method deposit, that describes adding money to a bank ac-
count:
 specification void deposit(int sum)
 {
 pre {return (0 < sum) && (balance <= Integer.MAX_VALUE - sum);}
 post
 {
 if(balance > 0)
 mark "Deposit on account with positive balance";
 else if(balance == 0)
 mark "Deposit on empty account";
 else
 mark "Deposit on account with negative balance";

 branch Single;

 return balance == pre balance + sum;
 }
 }

Body of the specification method describes the behavior of the target method using
the form of preconditions and postconditions.

Precondition is a block that is marked with the keyword pre and it returns the result of
type Boolean depending on input and output parameters and the state of the object of
the specification class. Precondition gives field of application for a specification
method – if precondition returns true then one may expect correct method behavior;
otherwise, the method result may be undefined.

In the above example, the precondition shows that the amount of the deposit sum
should be positive and the result of addition of the current balance balance and the
amount of deposit sum should not exceed maximum allowed value of type int.

Precondition of any specification method may be omitted and it is equivalent to pres-
ence of precondition that always returns true:
pre { return true; }
Postcondition is a block that is marked with keyword post and it returns result of type
boolean. Postcondition analyses parameter values of the specification method and its
result, state of the object of the specification class and shows if method behavior is as
expected.

In the above example, the postcondition shows that the behavior of the method de-
posit is correct if the account balance after the method call (balance) equals to the
sum of the account balance before method call (pre balance) and the amount of the
deposit sum.

 7

 JavaTESK: Introduction

Operators branch and mark are used for definition of test coverage that will be de-
scribed later.

Let’t look at the specification method withdraw, that describes withdraw from an ac-
count:
 specification int withdraw(int sum)
 {
 pre { return sum > 0; }
 post
 {
 if(balance > 0)
 mark "Withdrawal from account with positive balance";
 else if(balance == 0)
 mark "Withdrawal from empty account";

 else
 mark "Withdrawal from account with negative balance";

 if(balance < sum - maximumCredit)
 {
 branch TooLargeSum;

 return balance == pre balance
 && withdraw == 0
 ;
 }
 else
 {
 branch Normal;

 return balance == pre balance - sum
 && withdraw == sum
 ;
 }
 }

 }

Precondition shows that the amount to withdraw sum should be positive.

Using the second condition if, postcondition processes two cases: when the withdraw
of the given amount is impossible (the condition is true) and when the withdraw of the
given amount is possible (the condition is false). Postcondition shows that in the first
case the balance should be unchanged and the method should return 0. In the second
case, the balance should be decreased by the withdrawn amount sum and this sum
also should be the method return value. To reference the result of the method with-
draw the identifier with the same name is used.

In addition, JavaTESK language provides means to describe constraints for the possi-
ble values of the fields of specification classes. These constraints are called data in-
variants and are described as specification methods marked with the modifier invari-
ant. The return value is of type boolean.

For the specification class AccountSpecification one data invariant I is defined:
 invariant I()
 {
 return balance >= -maximumCredit;

 8

 JavaTESK: Introduction

 }

This invariant shows that the balance should not be lower than maximum allowed
credit.

 9

 JavaTESK: Introduction

This is a complete source code listing of the specification class AccountSpecifica-
tion.
package jatva.examples.account;

specification class AccountSpecification
{
 static public int maximumCredit;
 public int balance;

 public AccountSpecification() { }

 invariant I()
 {
 return balance >= -maximumCredit;
 }

 specification void deposit(int sum)
// reads sum, Integer.MAX_VALUE
// updates balance
 {
 pre { return (0 < sum) && (balance <= Integer.MAX_VALUE - sum);
}
 post
 {
 if(balance > 0)
 mark "Deposit on account with positive balance";
 else if(balance == 0)
 mark "Deposit on empty account";
 else
 mark "Deposit on account with negative balance";

 branch Single;

 return balance == pre balance + sum;
 }
 }

 specification int withdraw(int sum)
// reads sum, maximumCredit
// updates balance
 {
 pre { return sum > 0; }
 post
 {
 if(balance > 0)
 mark "Withdrawal from account with positive balance";
 else if(balance == 0)
 mark "Withdrawal from empty account";
 else
 mark "Withdrawal from account with negative balance";

 if(balance < sum - maximumCredit)
 {
 branch TooLargeSum;

 return balance == pre balance
 && withdraw == 0
 ;
 }
 else

 10

 JavaTESK: Introduction

 {
 branch Normal;

 return balance == pre balance - sum
 && withdraw == sum
 ;
 }
 }
 }

}

To make sure the code of the specification class is correct, run the project build with
the command Project/Build Project or run automatic build:

1. Call with the command Project/Clean dialog Clean and check Clean all
projects checkbox or check Clean projects selected below checkbox, and
mark off the project AccountExample.

2. Press OK.

If the code is correct, the window Problems (to show it select command Win-
dow/Show View/Problems) will be empty. This way the entire project is
checked, correctness of mediators and scenarios may be checked the same manner.

Mediator Development
Now we have target class Account and specification class AccountSpecification. To
give test the ability to check the correspondence between target and specification
classes we need a link between these classes.

For this purpose special components of the test system are used that are called media-
tors. Mediators are described within special classes that are called mediator classes.

The file of the example AccountMediator.sej consists of the mediator class Ac-
countMediator, that links specification class AccountSpecification and target class
Account. So a mediator definition should implicitly include these classes indications.

• Specification class AccountSpecification, that the mediator is created for, is
denoted in the declaration of the mediator class:

mediator class AccountMediator implements AccountSpecification

Keyword implements in Java means that declared class implements some in-
terface. Similarly, mediator class definition should include mediator method
for each method of specification class.
In addition, mediator class inherits fields of the specification class to store test
model data.

• The target class Account is used in the declaration of the special field of the
mediator class:

implementation Account targetObject = null;

 11

 JavaTESK: Introduction

Keyword implementation means that the purpose of this field is to store test
object of the target class. Test actions are applied to this object.

So the specification and target class are identified. To test results be trustworthy, test
data model (that consists of inherited from data fields of specification class) and data
of the object under test (that contains target class fields) should strictly conform to
one another. For this purpose, there is a block of synchronization update that syn-
chronizes mediator fields with current object state of the target class. This synchroni-
zation should guarantee that target class behavior and its specification model behavior
are both caused by the same input data. Let’s consider block updates of the mediator
class AccountMediator:
update
 {
 maximumCredit = Account.maximumCredit;
 if(targetObject != null)
 {
 balance = targetObject.balance;
 }

 }

Synchronization is rather simple here because the fields of the target class are stack
variables – target class fields are simply assigned to mediator fields. In more complex
cases, for example while synchronizing fields that contain objects of different classes
and data structures, implementation of block update may become much more com-
plex.

Synchronization is needed to check target class methods results. Mediator also per-
forms these methods calls using mediator methods. Let’s consider mediator method
deposit:
mediator void deposit(int sum)
{
 implementation
 {
 targetObject.deposit(sum);
 }

}

The definition of this method is anticipated with keyword mediator. Keyword im-
plementation in this case defines the call block of the target method.

The method deposit returns nothing, but it takes one parameter. If needed (if parame-
ters have complex internal structure that is different from specification and target
class), mediator method may consist some code that processes supplied parameters to
the form suitable for the called method.

Value returned by the target method may be transformed to the form suitable for
specification method. The transformation code should be inside this block because the
call occurs in the block implementation. The result of transformation is returned
back to specification method by operator return in the block implementation.

The code of the mediator method withdraw:
mediator int withdraw(int sum)
{

 12

 JavaTESK: Introduction

 implementation
 {
 return targetObject.withdraw(sum);
 }

}

Below is the listing of full source code for the mediator class AccountMediator.
package jatva.examples.account;

mediator class AccountMediator implements AccountSpecification
{
 mediator void deposit(int sum)
 {
 implementation
 {
 targetObject.deposit(sum);
 }
 }

 mediator int withdraw(int sum)
 {
 implementation
 {
 return targetObject.withdraw(sum);
 }
 }

 implementation Account targetObject = null;

 update
 {
 maximumCredit = Account.maximumCredit;
 if(targetObject != null)
 {
 balance = targetObject.balance;
 }
 }

}

Test Scenario Development
Test scenarios are developed to reach some testing goal. Usually, this goal is de-
scribed in terms of test coverage, for example, one should reach 70% coverage of
lines of code of a target class. In JavaTESK coverage criteria is described in terms of
specification coverage.

Let’s assume that our goal is to reach 100% coverage of functional brunches of the
specification class AccountSpecification. It means that we should run a test suite,
that covers all functional brunches, defined in postconditions of the specification
methods of the given class using operators branch.
There are following branches:

• Single
• TooLargeSum
• Normal

 13

 JavaTESK: Introduction

Test scenarios are described using special classes that are called scenario classes. In
the example project, test scenario is located in the file AccountTestScenario.sej.

Definition of a scenario class should contain keyword scenario:

scenario class AccountTestScenario

Scenario class contains object of the specification class, methods of which will be
called in the testing process:

protected AccountSpecification objectUnderTest;

In the constructor of the class AccountTestScenario there are indications for the tar-
get class and mediator: in our example for this purpose the method configureMedia-
tors is developed, that returns initialization value for the field objectUnderTest:
public AccountTestScenario()
{
 objectUnderTest = configureMediators();
 setTestEngine(new DFSMExplorer());
}

public static AccountSpecification configureMediators()
{
 AccountSpecification result = mediator AccountMediator

(targetObject = new Account());
 result.attachOracle();
 return result;
}

Keyword mediator in this case is used for mediator class object creation. It differs
from keyword new with the check: if mediator of the type AccountMediator, which
is initialized with object of class Account, already exists then new mediator is not
created and old one is used.

Method calls of the object objectUnderTest are called test actions and are performed
in test methods.

Let’s look at the method deposit:
scenario deposit()
{
 if(objectUnderTest.balance < maxBalance)
 {
 objectUnderTest.deposit(1);
 }
 return true;

}

To limit the number of test actions, maximum value (field maxBalance) is intro-
duced. It is assumed that method deposit increases balance by one on each call, so af-
ter a finite number of calls maximum should be reached.

In the scenario method withdraw one may see incremental parameters processing:
scenario withdraw()
{
 iterate(int i = 1; i < maxCredit+3; i++;)
 {
 objectUnderTest.withdraw(i);

 14

 JavaTESK: Introduction

 }
 return true;

}

Usual cycles work until some internal condition is false. Operator iterate is similar to
the usual cycle with the only difference that only one iteration of cycle is performed
on each scenario method call.

Therefore, operator iterate gives the ability to limit each scenario method call with
single test action and at the same time it defines parameters for multiple actions in the
code of the same scenario method.

After objects of testing and scenario methods are defined, one should include in the
method main instructions that run the test:

AccountTestScenario myScenario = new AccountTestScenario(); my-
Scenario.run();

 15

 JavaTESK: Introduction

Below is the full source code of the scenario class AccountTestScenario.
package jatva.examples.account;

import jatva.engines.DFSMExplorer;

scenario class AccountTestScenario
{
 public static AccountSpecification configureMediators()
 {
 AccountSpecification result = mediator AccountMediator(targetOb-
ject = new Account());
 result.attachOracle();
 return result;
 }

 int maxCredit = 3;
 int maxBalance = 10;

 public static void main(String[] args)
 {
 jatva.tracer.Tracer.getPrototype().setXmlFormat();
 AccountTestScenario myScenario = new AccountTestScenario();

 if(args.length > 0)
 {
 int n = Integer.parseInt(args[0]);
 if(n < 1) n = 1;
 myScenario.maxBalance = n;

 if(args.length > 1)
 {
 n = Integer.parseInt(args[1]);
 if(n < 0) n = 0;
 myScenario.maxCredit = n;
 Account.maximumCredit = n;
 }
 }

 myScenario.run();
 }

 protected AccountSpecification objectUnderTest;

 public AccountTestScenario()
 {
 objectUnderTest = configureMediators();
 setTestEngine(new DFSMExplorer());
 }

 state
 {
 return new Integer(objectUnderTest.balance);
 }

 scenario deposit()
 {
 if(objectUnderTest.balance < maxBalance)
 {
 objectUnderTest.deposit(1);
 }

 16

 JavaTESK: Introduction

 return true;
 }

 scenario withdraw()
 {
 iterate(int i = 1; i < maxCredit+3; i++;)
 {
 objectUnderTest.withdraw(i);
 }
 return true;
 }

}

Tests Run and Results Analyzing
To run test scenario one should select correspondent file in the window Package Ex-
plorer and press keys combination Ctrl+F11, right click the window and select the
element of the context menu Run As/JavaTESK Test.

Figure 5. Run of the scenario class AccountTestScenario.

 17

 JavaTESK: Introduction

In the case of successful test run, trace file is created with extension .utt. Its name
consists of the name of scenario class and trace number separated with dot. The trace
file appears in the project on the same hierarchy level as the finished scenario.

Make sure that the trace file is created and window tab of Package Explorer looks
like at the figure.

Figure 6. Trace file after run of the scenario AccountTestScenario.

Trace file contains input information for reports generation about testing performed.

In reports there is information about errors, found during testing and level of test cov-
erage reached.

JavaTESK supports to types of reports:
• HTML reports
• Trace representation

HTML report
HTML report is a collection of HTML documents with information about testing per-
formed.

To generate HTML one should right click in Package Explorer window on corre-
spondent trace file and select command Generate Report.

 18

 JavaTESK: Introduction

Figure 7. HTML report generation.

Dialog Generate UniTESK Report will be opened with options for the HTML report
generation. Tab Generate contains parameters of the files generation and tab Report
allows to chose the content of the report.
To view the reports in the external browser one should check Use external browser
to view report checkbox.

 19

 JavaTESK: Introduction

Figure 8. Options to generate HTML report.

The table on the page Overview provides information about coverage of test packages
and namespaces that were used in the tests run. There are following columns:

• branches — level of functional brunches coverage
• marks — level of marked ways coverage
• predicates — level of predicate coverage
• disjuncts — level of disjunctive coverage
• states/transitions — number of states/number of transitions between

states

Figure 9. Page Overview HTML of the report.

 20

 JavaTESK: Introduction

To get information about testing of the class Account, select menu item
j.examples.account. Information from the Overview table will be divided into the
scenarios and specifications tables: the states number is a scenario property and cov-
erage values are specification property.

Figure 10. Page with test results overview.

Sub item of menu AccountTestScenario opens table Scenario Transitions Report,
where one may find all transitions between states of the test model with the following
characteristics:

• states — initial states (before transitions). Transitions are grouped by this
parameter – there are double borders between groups.

• transitions — methods that cause transition and values of the iteration
variables of the iterate operators that were used by call

• end states — finite states (after transitions)
• hits/fails — number of transitions performed/number of errors found in

the transitions

Figure 11. Page with scenario transitions data of the HTML report.

 21

 JavaTESK: Introduction

Sub item of the menu AccountSpecification opens table Specification Summary
Report, where coverage parameters are described in detail for each specification
method:

Figure 12. Summary page of specification methods coverage.

Click on either method to open the extended coverage table:

• branches — covered branches (in the code marked with keyword branch)
• marks — marks of variants branch pass (marked with keyword mark)
• predicates — conditions, that correspond to label mark of the same table

line
• disjuncts — logic values of items preconditions and postconditions of

variant branch pass
• hits/fails — number of passes for the given branch and number of errors

found in these transitions

Figure 13. Table with test results for the specification method deposit.

 22

 JavaTESK: Introduction

Similar table is for the method withdraw; variants for different branches branch are
grouped accordingly.

Figure 14. Table with test results of specification method withdraw.

Note that report data here shows full target functionality coverage: all planned behav-
ior variants are correctly tested.

Trace Representations
JavaTESK supports four trace representation views:

• XML (XML representation) – representation of the trace in XML format, text
file generated by test environment

• Structure (structure representation) – representation of the trace as a tree
from structure trace elements

• MSC (MSC representation) – representation of the trace as MSC (Message
Sequence Charts) diagram

• FSM Model (automata representation) – representation of one of the test sce-
narios as a state and transitions graph of finite automata

 23

 JavaTESK: Introduction

In IDE Eclipse it is possible to view all four representations: double click to
open default representation (FSM) and switch between representations using
tabs in the lower part of the window.

Fugure 15. FSM-representation of the trace.

In the given representation, the trace is depicted as a state graph of finite automata de-
scribed in the scenario class AccountTestScenario. To find out details about transi-
tion click arrow that shows it. Line will be outlined in color and under the arrow full
name of the scenario method will be shown and correspondent iteration variables val-
ues will be depicted also.

JavaTESK gives the ability to play trace representation back and forward. By default,
Play Forward button starts automata playback from initial state; if one selects by
click some state or arrow pointing to it then playback will start from this place. Cur-
rent states and transitions are outlined in color.

 24

 JavaTESK: Introduction

Use counter Speed to set up play speed. Other buttons work according to the icons:
allow to play in the reverse direction, stop playback until automata work finishes and
see step-by-step run in both directions.

Figure 16. FSM-representation of the trace in the playback mode.

 25

 JavaTESK: Introduction

Activate the XML tab, to see XML representation of the trace. In this representation,
the trace is shown in its original way, as it is stored in .utt file.

Figure 17. XML representation of the trace.

 26

 JavaTESK: Introduction

To see the structure representation of the trace open tab Structure. Trace is repre-
sented as a tree of structure elements there.

The root of the tree is node Trace that corresponds to the selected trace file. Its de-
scendants are nodes Thread that describe threads created by the test. In our example
we create one thread with the identifier 0. Its descendants are nodes Scenario, that
describe scenario classes run in the given thread. In our example this is a single sce-
nario class AccountTestScenario. Its descendants are nodes State, that describe
states of the finite automata listed in the order passed during testing. For each state,
there is its identifier and transition Transition. Transition is characterized with the
scenario method (jatva.examples.account.AccountTestScenario.deposit) and model
of the target class Model, where the specification method
(jatva.examples.account.AccountSpecification.deposit(int)) is denoted and the
node Oracle, that contains checks performed by oracle.

Figure 18. Structural representation of the trace.

 27

 JavaTESK: Introduction

To see the MSC diagram of the trace, open tab MSC. Scenario and specification meth-
od calls and behavior correctness verdict of the target class object are diagram mes-
sages.

Figure 19. MSC representation of the trace.

 28

	Introduction
	Target Class Description
	Project Creation in Development Environment
	Target Class Specification
	Mediator Development
	Test Scenario Development
	Tests Run and Results Analyzing
	HTML report
	Trace Representations

