
* Reference to ISPRAS is obligatory when
copying materials of this document fully or partially.

Software Testing for
Embedded Avionics Systems

Institute for System Programming
of the Russian Academy of Sciences (ISPRAS) *

1. Goals of airborne software testing.
Testing of software for embedded avionics systems has two complementary objectives. One

objective is to demonstrate that the software satisfies its requirements. The second objective is to
demonstrate with a high degree of confidence that errors, which could lead to unacceptable failure
conditions, as determined by the system safety assessment process, have been removed.
Requirements-based testing is emphasized because this strategy has been found to be the most
effective at revealing errors. Therefore, to satisfy the airborne software testing objectives in
accordance with the DO-178B [3] standard:

test cases should be based primarily on the software requirements;
test cases should be developed to verify correct functionality and to establish conditions that
reveal potential errors;
software requirements coverage analysis should determine what software requirements were
not tested;
structural coverage analysis should determine what software structures were not exercised
during testing.

2. Conformance testing for ARINC-653 standard.
The ARINC-653 standard – “Avionics Application Software Standard Interface” – was developed

by ARINC (Aeronautical Radio, Inc.) in 1997. This standard defines an application program interface
APEX (Application/Executive) between an operating system of the avionics computer and
application software. At present, it has been chosen as the main standard to be implemented in real-
time operating systems (RTOS) for embedded avionics systems.

To support the requirements-based conformance testing and to simplify the certification process
of commercial of-the-shelf software products, the ARINC-653 standard includes Part 3 – Conformity
Test Specification – containing description of test cases for checking functionality of an RTOS
application program interface (API) on conformance with the requirements from ARINC-653 Part 1 –
Required Services. This test suite includes about 250 test cases covering the requirements to all 56
functions required to be implemented in any ARINC-653 compliant RTOS. The operating system
obtains the status of full compliance with ARINC-653 Part 1 when all test cases from this test suite
pass. The development of conformity test suite specification for ARINC-653 Part 2 – Extended
Services – is now in progress by the ARINC-653 standardization committee.

The Institute for System Programming of the Russian Academy of Sciences (ISP RAS) has
developed the test suite for checking an RTOS on compliance with the ARINC-653 Part 1. This test
suite includes the test cases specified in the ARINC-653 Part 3. However, many errors were revealed
in the ARINC-653 Part 3 test specifications during test suite development. The main problem with
these test cases specifications is that many checks do not correspond to the ARINC-652 Part 1
requirements and sometimes violate them. Apparently, the test specification was not adapted to
modifications in API functional requirements specification. As a result, the test specification became
outdated and detached from the RTOS API specification. To overcome this problem, the test suite
was improved and significantly extended with:

test cases for combinations of some requirements left uncovered in ARINC-653 Part 3 (these
additional test cases detected errors in the target RTOS unable to be detected by the initial
tests specified in ARINC-653 Part 3);
test cases for functionality of Interpartiton Communication interfaces in the system partitions
supporting POSIX API;
system test cases for Interpartition Communication, Intrapartition Communication and Health
Monitoring subsystems.

The resulting test suite includes over 370 test cases covering all aspects of functionality of
individual interfaces as well as the functionality of subsystems as a whole. The test suite is
implemented in C programming language. The structure of the test suite is as defined in the ARINC-
653 Part 3 and includes the following layers:

service macros;
individual tests;
test sequence.

For each function (service) of the API under testing, one procedure is implemented to check the
correctness of this API function execution on one set of input parameters by comparing the results of
the target function execution with the expected ones. This procedure is called “service macro”. The
layer of individual tests is implemented as a set of files with the names corresponding to the test
identifiers in ARINC-653 Part 3. The test sequence layer is implemented as a test script and supports
test execution in any order using system configuration individually developed for each test. This
approach avoids possible interference (mostly temporal) of tests during test execution.

The developed test suite was used and approved in the OS2000 [4] RTOS testing project. It
detected several errors in the target system which could not be detected with the initial test suite
specified in ARINC-653 Part 3.

3. Conformance testing for POSIX standard.
Another standard widely used in RTOS for embedded avionics systems is POSIX (Portable

Operating System interface for unIX) [2]. It defines portable API sources of operating systems. The
main specification was developed as IEEE 1003.1 specification and became the international standard
ISO/IEC 9945-1:1990. Three POSIX standards are of the most interest for RTOS for embedded
avionics systems: 1003.1a (OS Definition), 1003.1b (Realtime Extensions) 1003.1c (Threads).

ISP RAS has developed the test suite for conformance testing of RTOS against POSIX
requirements. Comparing to existing test suites for POSIX (for example, Open Group certification
test suite and the Open POSIX Test Suite project results), this test suite has the following features and
advantages:

requirements formalization: functional requirements to the target system behaviour
extracted from the standard are represented as contract specifications;
automatic test generation: tests or sequences of test stimuli are generated during test
scenario execution that checks functional requirements and ensures the test coverage
according to the given coverage criterion;
using of a “test agent” feature to facilitate test suite execution on target platforms with
limited resources (ex., embedded platforms).

Automatic test generation from contract specifications implemented in the ISP RAS test suite for
POSIX gives more control over the test suite. It allows specifying functional requirements extracted
from the standard apart from test data and checking procedures for these requirements. This feature
significantly simplifies modification of the test suite when adapting to evolving standard or to the
requirements of specific application domain.

Requirements catalogue for POSIX now contains over 10,000 requirements extracted from the
text of the standard. These requirements for 916 POSIX functions are formalized in the contact
specifications of the total size of about 60,000 lines. The test suite contains 172 test scenarios for
testing these POSIX functions and subsystems.

The ISP RAS test suite for POSIX was used and approved in the OLVER (Open Linux
VERification) project [5]. In this project, various distributions of OS Linux were tested with the
developed test suite for POSIX. The code coverage obtained during this testing is close to results of
the debug test suite for Linux glibc library created by the library developers with detailed knowledge
of the library implementation, but not aimed at conformance testing against any particular standards.
For some groups of functions, the ISP RAS test suite for POSIX provides better code coverage than
other existing test suites for functional conformance testing.

4. Testing process support for DO-178B standard.
The DO-178B standard “Software Consideration in Airborne Systems and Equipment

Certification” [3] developed by RTCA (Radio Technical Commission for Aeronautics) defines the
requirements to software development and certification process for on-board avionics systems.
Europe has adopted the ED-12B standard, which is similar to DO-178B and supported by EUROCAE
(The European organisation for civil aviation equipment). In 2003 Russia has adopted the GOST R
51904-2002 standard “Software for embedded systems: general requirements to development and
documenting”, which is also similar to DO-178B. None safety-critical computer system becomes
airborne unless all rigid requirements of this standard are satisfied.

Certification methodology defined in DO-178B demands the proven quality of the developed
software solutions from software vendors. As a method for providing such a proof, the standard
suggests the vendors to develop a requirements-based test suite with the following features:

test suite contains test cases for each software requirement;
test cases are traced to requirements and vice versa;
test cases satisfy the criteria of normal and robustness testing.

To support these works of software testing and test suites development, ISP RAS has developed
the UniTESK technology [6] and the FOREST (FOrmal REquirements Specification and Testing)
process [7]. The main objectives of this approach are:

to create formal specification of software requirements;
to develop on its basis the test suite for testing the software functionality against these
requirements.

The process of test suite development includes four stages. The results of each stage are used at
the later stages, but also can be used separately.

Stage 1. Requirements are extracted from initial documents (ARINC-653 Part 1 and 2, POSIX
etc.) and systematized. This work results in creation of the requirements catalogue. In this catalogue,
the requirements are unambiguously formulated, categorized, provided with unique identifiers and
possibly linked together with appropriate relations. The requirements catalogue is used at the later
stages and provides means for futher estimation of test coverage and completeness of software
implementation in terms of the initial documents (text of standard).

Stage 2. Requirements analysis is performed. Conceptual models of the requirements are the
main means for such analysis. When developing and analysing the conceptual models, the application
domain knowledge is restructured and various model properties (adequacy, completeness, etc.) are
checked. The model development is based on the requirements catalogue created at the first stage.

Stage 3. Formal representation of requirements. The mathematical formalism of contract
specifications is used to formally represent the requirements form the catalogue. The restructuring
and analysis of application domain knowledge at the previous two stages significantly facilitates the
conversion of the requirements from textual form into formal representation.

Stage 4. Test development using the contract specifications. At this stage, test scenarios are
developed for checking all requirements from the catalogue formalized in the contract specifications.
Test scenarios are written in the specification language and are executed with the UniTESK tool. The
results of test execution are summarized in the test report presenting the exhaustiveness of testing
according to the given coverage criteria and possible violations of requirements from the catalogue.

Use of this approach allows creation of test suite with clear traceability of test cases to
requirements formulated in the text of the standard. It can significantly simplify the identification and

modification of tests requiring redesign after possible modification of initial requirements. As a
result, the UniTESK technology and the FOREST process provide framework for software testing
compliant with the rigid requirements of DO-178B standard and hence simplify software certification
according to this standard.

5. References.
1. ARINC. ARINC Specification 653-2: Avionics Application Software Standard Interface Part 1 -

Required Services. Aeronautical Radio INC, Maryland, USA, 2005.
2. IEEE Std 1003.1, 2004 Edition. The Open Group Technical Standard. Base Specification, Issue 6.
3. RTCA/DO-178B, "Software Considerations in Airborne Systems and Equipment Certification".

http://www.rtca.org
4. OS2000. http://en.wikipedia.org/wiki/OS2000
5. http://www.linuxtesting.org
6. http://www.unitesk.com
7. V.V.Kuliamin, N.V.Pakulin, O.L.Petrenko, A.A.Sortov, A.V.Khoroshilov “Requirements

formalization in practice”. Preprint N.13, ISP RAS, 2006 (in Russian).

http://www.rtca.org
http://en.wikipedia.org/wiki/OS2000

