
Getting Started with OTK.

Version 2.5

Sergey Zelenov
zelenov@ispras.ru

Copyright c© 2006 Institute for System Programming of Russian Academy of Sciences,
Moscow, Russia

http://www.ispras.ru/~RedVerst/

1. Introduction

1 Introduction

This document considers the process of test development with the help of OTK tool. As
an example test generation for compiler modules transforming arithmetical expressions is
considered.

Below by target module we mean a compiler module under test, and by target language we
mean programming language processed by this compiler.

The document contains the following parts:

• Target Module Description (see section 2)

• Creation of a Project (see section 3)

• Model development (see section 4)

• Mapper Development (see section 5)

• Iterator development (see section 6)

– Development of Iterators for Model Elements (see subsection 6.1)

– Creating a Model Structures Iterator (see subsection 6.2)

• Test Generation (see section 7)

– Configuring Test Generator (see subsection 7.1)

– Starting Test Generation (see subsection 7.2)

2 Target Module Description

In our example target module is a compiler module that perform some transformations of
arithmetic expressions containing additions of integer constants, integer variables and
subexpressions that are combinations of such additions.

3 Creation of a Project

The example project ’Expressions’ considered in this document comes with OTK Tool. It
is located in examples/expressions subdirectory, so you can skip the description of new
project creation and open the existing one (select menu item File → Open Project, enter
the directory mentioned above and open Expressions.otk file) and proceed with model
development (see Model Development (see section 4)).

In order to create a project that will contain test generator for the target module, start
OTK Tool (OTK Tool requires no installation, simply execute otk.exe in Windows or otk in
Linux/Unix environment).

To create a new project select menu item File → New Project. In the appeared window
New project (see figure 1) you should do the following:

3

Getting Started with OTK.

• type in project identifier (Project identifier field),

• set project location (Project base directory field),

• set name of the file where different project settings will be stored (Project file name
field),

• specify root package of the project (Root package name field), as for Java language.

Figure 1: Creation of a new project

For directories with source files of the project (Source directory field) and and with
compiled classes (Build directory field) OTK tool will propose default values (src and
build subdirectories in the project location), you may use these settings or specify your own.
When all is ready, press Next.

On the second step model name should be typed in (by default Model is used) and some
additional information. In this dialog you may use default values for all fields. Press Next to
proceed project creation.

In the third dialog you may use default values for all fields, too. Press Finish to finish
project creation.

Now in the project directory the following artifacts are generated automatically:

• file with different project settings (with .otk extension),

4

4. Model Development

• directory for project source files,

• directory for project compiled classes.

Furthermore, in the project source files directory the subdirectory for root java package
will be created, and in this package the template for the formal description of abstract model
will be generated (file with model name you’ve typed in earlier and with .tdl extension).

4 Model Development

OTK tool supports the UniTESK technology , that implies the clear and unambiguous
description of input data of the target module. Such description of input data is called
abstract model of the input data or simply abstract model .

In OTK abstract models are formally described using special language called TDL (Tree
Description Language).

’Expressions’ project already has abstract model (Model.tdl file in the root package of
the project), so you can skip model development description and proceed with mapper
development (see Mapper Development (see section 5)).

An abstract model is built on the basis of target module documentation. To create an
abstract model one should analyze this documentation and build summary diagram of the
model elements.

In our example documentation says: the target module erforms some transformations of
arithmetic expressions containing additions of integer constants, integer variables and
subexpressions that are combinations of such additions.

Thus our target module processes only arithmetic expressions (below we will simply call
them ”expressions”) that are either addition or integer variable value or integer constant (see
figure 2).

Figure 2: Kinds of expressions

An addition has two operands (left one and right one), each of them is also an expression
(see figure 3).

Furthermore, one should specify the leading model element corresponding to the whole
test (see figure 4).

Finally we get the following summary diagram (see figure 5):
On the basis of this diagram the formal description of abstract model is written using

TDL. Open Model.tdl file located in the project root package. For opening files menu item

5

Getting Started with OTK.

Figure 3: The structure of addition

Figure 4: Leading model element

Figure 5: Summary diagram of the model

File → Open File can be used. By default the files are opened using a very simple built in
editor, but you can specify your favorite editor using menu item Options → File Editor.

In a recently created project Model.tdl contains automatically generated template of
model description:

[translate.language = "java";

visitor.name="TestVisitor";

]

tree ru.ispras.redverst.optest.examples.expressions.Model;

header

{

import ru.ispras.redverst.optest.OtkNode;

}

Here the model name is specified (using tree keyword), and there are some additional
declarations (code enclosed with square brackets and a special header block).

After header block the definitions of the model elements should be inserted:

6

5. Mapper Development

node Test : <OtkNode>

{

child Expr expr;

}

abstract node Expr : <OtkNode>

{}

node AddExpr : Expr

{

child Expr left;

child Expr right;

}

node Var : Expr

{}

node Int : Expr

{}

Each definition of model element starts with keyword node, which can be preceeded by
abstract modifier in case of generalized model element.

If the model element is an inheritor of the generalized model element then the name of the
generalized element should be specified after colon. If the model element is not an inheritor of
any other element, one should write ’¡OtkNode¿’ after colon.

References to other model elements are described as fields using child keyword.

Make sure that the model generated can be compiled without errors. Model compilation
can be performed by Build → Rebuild All menu item.

5 Mapper Development

Our project contains formal description of model elements. Test generator will construct
different structures from these elements. But in order to obtain tests for target optimizer, i.e.
to generate tests in the target language (for example, in C) test generator should be provided
with information about transforming abstract model elements to text in the target language.
Such information is provided by a special component called mapper .

Mapper is typically a separate java class.

’Expressions’ project already has the mapper called DefaultMapper, located in
ru.ispras.redverst.optest.examples.expressions.mapper package, so you can skip the
description of new mapper development and proceed with iterator development (see Iterator
Development (see section 6)).

7

Getting Started with OTK.

In order to create a new mapper select menu item File → New File → New Mapper,
in the window appeared (New mapper) press Add all non abstract nodes to select all
non abstract model elements (see figure 6). Then press Next.

Figure 6: Selection of the model elements to be mapped

Nothing should be done for our mapper on the second step. Simply press Next.

On the third step package name and class name of the mapper should be specified (see
figure 7). When all is ready, press Finish.

Figure 7: Specifying package name and class name for the mapper

Now the file containing the template for java class representing a mapper is generated.
With comments thrown away, this template looks like following:

8

5. Mapper Development

package ru.ispras.redverst.optest.examples.expressions.mapper;

import ru.ispras.redverst.optest.examples.expressions.Model;

public class DefaultMapper

extends ru.ispras.redverst.optest.examples.expressions.EmptyMapper

{

public void visitAddExpr(Model.AddExpr node) {}

public void visitInt (Model.Int node) {}

public void visitTest (Model.Test node) {}

public void visitVar (Model.Var node) {}

}

This class is an inhertor of EmptyMapper class, which is generated automaticaly for each
project. For each model element selected during mapper creation the mapper class contains
method, whose named is obtained from element’s name by adding ’visit’ prefix. Such
methods are responsible for mapping of corresponding model element into text.

Let’s take a look at mapper method for AddExpr element, that describes addition
expression:

public void visitAddExpr(Model.AddExpr node)

{

txt("(${left} + ${right})");

}

In order to generate text the txt method from OTK Tool library is used. Our mapper
inherits this method from EmptyMapper class. This method takes one argument – a string to
be printed. This string can contain references to text that should be generating by processing
the fields of the model element. Each such reference is a field’s name enclosed in ”{}” with
leading ”$”: ’${...}’.

Let’s take a look at mapper methods for other model elements:

9

Getting Started with OTK.

public void visitInt(Model.Int node)

{

txt("3");

}

public void visitTest(Model.Test node)

{

txt("int main() {"); nl();

incIndent();

txt("int n = 2;"); nl();

txt("int res = ${expr};"); nl();

txt("printf(\"%d\\n\", res);"); nl();

popIndent();

txt("}"); nl();

}

public void visitVar(Model.Var node)

{

txt("n");

}

The mapper of Test element uses three more methods from OTK Tool library that can be
used to indent the text generated:

• nl starts new line,

• incIndent increase the indention of text to be printed,

• popIndent restores the previous value of indention.

Mapper of Test element generates the text of function main.
Mapper of Var element generates simply prints the name of the variable - ”n”. In order to

generate semantically correct programs, the definition of ”n” variable is inserted in the main
function.

In order to make the results of compiled test program work available for human, the call
for printf function is inserted in the main function that will print the result of calculation
of arithmetic expression from the test. In order to generate semantically correct programs, at
the start of each program should be the appropriate include directive providing the definition
of printf function. In order to specify the text that should be printed at the beginning of each
file one should define beginFile method in the mapper:

public void beginFile()

{

txt("#include <stdio.h>"); nl();

}

10

6. Iterator Development

Make sure that the mapper developed can be compiled without errors. Mapper
compilation can be performed by Build → Rebuild All menu item.

6 Iterator Development

Now our project contains formal description of abstract model elements and mapper that
can transform different combinations of these model elements to the text in the target
language. During test generation, test generator will construct different combinations of
model elements. In general, one can create an infinite number of different combinations, but
the size of test suite should not be infinite. In order to obtain a finite set of tests, one should
limit the set of allowed model structures and provide generator with information on how to
build model structures that satisfy these limitaions. In order to generate model structures
from this limited set only, the special generator component is used, called iterator .

Iterator of model structures consists of the iterators of model elements. Iterator
development involves the following:

• Development of iterators for model elements

• Creating of model structures iterator

6.1 Development of Iterators for Model Elements

For each model element an iterator should be developed. Normally, each iterator is a
separated java class.

’Expressions’ project already has iterators for all model elements, they are located in
ru.ispras.redverst.optest.examples.expressions.iterator package. So you can skip
the description of new iterator development process and proceed with specifying of iterator of
model structures (see Creating a Model Structures Iterator (see subsection 6.2)).

Let’s proceed with iterator development for model elements. To begin with, let’s consider
development of iterator for model elements without any fields: in our example these are Var
and Int model elements. Let’s start with iterator for Var.

In order to create a new iterator, select menu item File → New File → New Iterator,
then in New iterator window choose iterator for non abstract model element – choose item
Non abstract node (see figure 8) and press Next.

In the next dialog select model element for which iterator should be created from
combobox (see figure 9). Nothing should be specified for Var element here, so just press
Next.

Third, the package name and the class name of iterator should be specified (see figure 10).
Now press Finish and java class representing iterator for Var model element will be

generated. Similarly iterator for Int element should be created.
Let’s proceed with iterator development for model elements that have different fields and

create an iterator for AddExpr element. The first dtep is the same as for Var iterator, and
on the second step after selecting AddExpr in combobox one should specify iterators for left

11

Getting Started with OTK.

Figure 8: Choosing kind of iterator for non abstract model element

Figure 9: Choosing a model element to create iterator for

Figure 10: Specifying packege name and class name of the iterator

and right fields of these element (see figure 11). Both field are of Expr type, therefore the
iterator of Expr model element should be used for them. Since the iterator for Expr model
alement has not been created yet, one may choose iterator of one of its inheritors, for
example, iterator for Int element. Select left field in dialog, press Set iterator and in the
window appeared choose
ru.ispras.redverst.optest.examples.expressions.iterator.IntIterator java class
from combobox (see figure 12). Similarly set the iterator for right field. Then press Next

12

6.1. Development of Iterators for Model Elements

Figure 11: Iterator development for model element containing fields - the second step

Figure 12: Choosing field iterator

and set packege name and class name of the iterator. When all is ready, press Finish.

The java class of iterator for AddExpr element is now generated. Since for element’s
fields we’ve chosen the iterator of Int element, the generated iterator will create only model
structures corresponding to the addition of integer constants. In order to generate model
structures corresponding to the addition of different expressions, one should specify the
iterator of Expr element for left and right fields. First, this iterator should be created.

Expr model element is a generalized model element. In order to create a new iterator for
it, select menu item File → New File → New Iterator, then in New iterator dialog
select item Generalized node (see figure 13). When all is ready, press Next.

In the next dialog select model element for which iterator should be created – Expr
element in our case. All inheritors of this generalized element will be shown (see figure 14).
For each inheritor the appropriate iterator should be specified. In order to do this, select an
inheritor and press the appeared Add button, then in the window appeared choose the
appropriate iterator from combobox and press OK (see figure 15). When iterators of all
inheritors are specified (see figure 16), press Next.

Third, the package name and the class name of iterator should be specified. When all is
ready, pressFinish.

13

Getting Started with OTK.

Figure 13: Choosing kind of iterator for generalized model element

Figure 14: Setup window for iterators of generalized model element inheritors

Figure 15: Choosing an iterator for one of the generalized model element inheritors

Now the java class representing iterator of Expr model element is generated.
Let’s return to the iterator for AddExpr model element. Take a look at java code of this

iterator’s constructor. It contains try block, where the initialization of main iterator is
perform. With comments thrown away, the java code of main iterator object initializations
looks like following:

14

6.1. Development of Iterators for Model Elements

Figure 16: Specifying iterators for inheritors of generalized model element

main_iterator = IteratorFactory.createDetailsIterator

(OTK.getIteratorProperty("iterator.AddExprIterator.combination")

, new ValueIterator[]

{ /* left */ new IntIterator()

, /* right */ new IntIterator()

}

);

This code should be improved in order to create model structures corresponding not only
to additions of integer constants, but to different addition expressions. In order to do this,
one should specify the iterator of Expr element for the right and left fields.

But if we simply replace here new IntIterator() with new ExprIterator(), then
during generation process the process of recursive constructor calls will be caught in an
endless loop: in order to initialize AddExpr iterator it is necessary to create Expr iterator
and vice versa. To avoid this problem each iterator provides getDepth method. If
getDepth() ¿ 0 (i.e. we haven’t reach the maximum allowed depth yet) then new

ExprIterator() should be used, otherwise we should use iterator which don’t have any
recursive dependencies, for example, new IntIterator(). The improved java code of
main iterator object initialization looks like following:

15

Getting Started with OTK.

main_iterator = IteratorFactory.createDetailsIterator

(OTK.getIteratorProperty("iterator.AddExprIterator.combination")

, new ValueIterator[]

{ getDepth() > 0 ?

(ValueIterator)new ExprIterator() :

(ValueIterator)new IntIterator()

, getDepth() > 0 ?

(ValueIterator)new ExprIterator() :

(ValueIterator)new IntIterator()

}

);

The iterator for AddExpr model element is ready.
The iterator for Test model element can be created in the same way as the iterator for

Var model element, but on the second step the iterator of the Expr model element should be
selected for expr field.

Make sure that the iterators developed can be compiled without errors. Compilation of
the iterators can be perform by Build → Rebuild All menu item.

6.2 Creating a Model Structures Iterator

After iterators for all model elements are developed, the iterator of model structures
should be created, that will be used by test generator.

’Expressions’ project already has model structures iterator, so you can skip the description
of creating new model structures iterator and proceed with test generation (see Test
generation (see section 7)).

In order to create a new model structures iterator, select menu item Project → Default
iterator and in the window appeared type in package name and class name for model
structures iterator. Also in Tree iterator class field you should select an existing iterator
which will be the leading iterator during test generation (in our case it is iterator of Test
model element) (see figure 17). When all is ready, press OK.

Make sure that the project has no errors. Perform a project build using Build →
Rebuild All menu item andd make sure that there are no compilation errors.

7 Test Generation

Now our project contains formal description of abstract model elements, mapper that can
transform different combinations of these model elements to the text in the target language
and the model structures iterator.

Before starting test generator, the project should be compiled. In order to create all
necessary files, select menu item Build → Rebuild All.

Test generation involves the following actions:

16

7.1. Configuring Test Generator

Figure 17: Creating model structures iterator

• Configuring test generator (see subsection 7.1)

• Starting test generation (see subsection 7.2)

7.1 Configuring Test Generator

During test generation process, the generator will generate different structures consisted of
model elements one by one and map them into text in the target language. Before generator
is started, it should be configured: one should specify the iterator of model structures and
mapper.

’Expressions’ project already has adjusted configuration, so you can skip description of
new configuration creation and proceed with starting test generation process (see Starting
test generation (see subsection 7.2)).

To create a new configuration select menu item Run → New Configuration, then in
the appeared window New configuration specify the configuration identifier (see figure 18)
and press Next. Now the configuration window will appear. The components of the test

Figure 18: Creation of a new configuration

17

Getting Started with OTK.

generator developed in our project should be set up in the configuration as plugins . First the
iterator of model structures should be set up. Specify the name of iterator plugin in Test
iterator plugin field and press Default button which is situated on the right from this field.
The folder with information about iterator plugin should appear in the configuration window
(see figure 19).

Figure 19: Setting up the iterator of model structures

In order to setup mapper one should open the window with the configuration of different
model processors (backends) by pressing Edit, which is situated on the right from Backend
list field (note that the Backend list checkbox should be checked). In the window appeared
in the toolbar near the right border press the sixth button from top, (which has ’Insert new
standard printer before selected item’ tip) (see figure 20). In the window appeared you

Figure 20: Adding printer in the backend list

should specify the printer plugin name (Printer plugin name field), select mapper java

18

7.1. Configuring Test Generator

class from combobox in Mapper class name field and type in the mapper plugin name
(Mapper plugin name field) (see figure 21). Now you can press OK here. In the backend

Figure 21: Specifying mapper class in the printer

editor press OK, too.
Now the configuration contains information about all necessary plugins. This information

represented as a directory tree in the configuration window (see figure 22).

Figure 22: Configuration window after specifying all plugins settings

Now the printer should be configured. In configuration window in printer plugin folder
open properties folder (Properties). Printer has four properties (see figure 23):

• output.dir – directory to hold generated files with tests;

19

Getting Started with OTK.

• file.prename – prefix of the generated files names;

• file.postname – prefix of the generated files names;

• file.size – number of tests to be printed in one file.

Figure 23: Configuring printer

Specify a directory where the generated files with tests will be situated. By left double
click on output.dir property make it active (note that the GUI is quite slow regarding
mouse double clicks; you should perform two clicks with some delay between them, or a fast
”triple” click). In order to browse your file system, press the folder icon on the right of the
property string and choose the directory where the test should be placed.

Specify the prefix of generated files names in file.prename field.
Specify the postfix of generated files names in file.postname field.
Set the number of tests printed in one file to 1.
Printer configuration is ready (see. figure 23).
Now the test generator configuration is ready. Press Save to save all changes, then press

Close to close configuration window.

7.2 Starting Test Generation

Before starting generation make sure that the configuration contains valid directory name
to place generated files into. Select menu item Run → Edit Configuration, in the appeared
window Edit configuration open printer folder, then open its subfolder Properties (see
figure 23) and by left double click on output.dir property make it active (note that the GUI
is quite slow regarding mouse double clicks; you should perform two clicks with some delay
between them, or a fast ”triple” click). In order to browse your file system, press the folder

20

7.2. Starting Test Generation

icon on the right of the property string and choose the directory where the test should be
placed. When all is done, press Save to save all changes, and then press Close.

To start test generation, select menu item Run → Start Generator. The Generate
window will appear reflecting generation process – for each generated file a dot will be shown.
If generation finishes successfully, the total number of tests generated will be printed (see
figure 24). Press Close to close the window.

Figure 24: Test generation was finished successfully

By default test generator creates tests where the depth of subexpression nesting is limited
by 2. In order to generate tests with greater depth of subexpressions nesting, one should
specify the maximum allowed value of depth in the configuration. This could be done by
selecting menu item Run → Edit Configuration, in the appeared window Edit
configuration open iterator folder, and then its subfolder Properties. By left double click
on AddExpr.depth make this property checked and change its value (see figure 25). When

Figure 25: Changing the properties of the model structures iterator

all is done, press Save to save all changes and then Close. Now test generation can be

21

Getting Started with OTK.

started by selecting menu item Run → Start Generator.

22

	Introduction
	Target Module Description
	Creation of a Project
	Model Development
	Mapper Development
	Iterator Development
	Development of Iterators for Model Elements
	Creating a Model Structures Iterator

	Test Generation
	Configuring Test Generator
	Starting Test Generation

