CTesK 2.2:
SeC Language Reference

Copyright © 2006 Institute for System Programming, Russian Academy of Sciences
Moscow 2006

Contents

Contents

COMLLILS .ccueeiineiiineiinicsinistiisnisssicsnessseessssssesssassssessssssssssssassssessssssssessssssssessssssssessssssssassssssssasssassssassss ii
AIPhabetical INAEX c..ccccueiciiiiiiiiiiiiiicssnicssnicssnnicsssnessssnessssnessssnesssssessssnsssssssssssssssssssssssssssssssssssssssanes 5
INErOAUCEION ...uuecneiiiiiiiiitiitiiientnntectnstecsseessessseessesssssssseesssssssessssssssssssassssesssssssssssssssssassssesssases 8
General information about SEC......uiiniiiiiiiiiiiiiisiiissninssniissiicsssnissssnessssnesssssesssssesssssesssssssssseses 9
SPECHICALIONS cevvrerureiersnrcssnicssnicsssnsssssnssssansssssnssasssssasssssasssss 10
SPECTIICALION LYPES ..veeniiieeiiieeiiee ettt ete ettt e eiee e st e e sbeeeseaeeesbeeesbeeeseseeensseeansseesnseeesseeesnseeensseenns 10
INVATTANTS OF TYP@S ...uttiiiiitieiit ettt ettt ettt et e et e e bt e et e e steeeabe e seeenbeesseesnbeeseesnneans 13
INVAriants Of VariabIeScc.eiiiiiiiiiiieiee ettt ettt 15
SPecification fUNCHIONS. ... cotiiiiiieieitee ettt ettt ettt sbe e 16
DEfErTed TRACTIONSvieueeeiieiiete ettt ettt ettt sttt et e st e bt et e st e sbe et e et e sbeeneesaeenee 19
AALCCESS COMSTIAIMNES ..c.uieiiieiieeitiesiie et ettt et e et e st e et e s bt e eabeesaeeeab e e sbesabeesseeenbeeseesabeenseeenseasnseenseas 21
AATASES .ttt e h et h e bt a bt e h e bt e a bt et e bt et e e a e e bt e teen e e ene e beentenaeenee 22
PrECONAITIONS.eietieite ettt ettt ettt e e b e st e e bt e sabeenbeesabeebeesnbeenseesneeenseas 23
COVETAZE CIILEIIA ...eevvieutieetieeieesiieeitteeteesteestteeteeseteesseessseesseessseasseessseensaessseesseessseenseessseensesseensseans 24
POSECONAILIONS ...ttt ettt et e st e bt e et e et esateesbeesabeenbeesnbeenseesneeenseas 25
o (10 €8] (o) 1011 OSSP PT 27
IMEAIALOT'S c.cuveeneiineisneiisnnnsnicsunissnecssessssecssnssssesssesssssessassssesssasssssssssssssnsssassssessssssssssssassssesssssssassssassssee 29
MEAIALOT TUNCHIONS ...ttt ettt ettt et st e sttt e et e bt et estesbe et e eneesbeeneesaeenee 29
CaLl DIOCKS. ...ttt ettt et et e et e s et e e bt e sae e e bt e beeenbeesaeesnbeebeennaeens 31
STALE DIOCKS ...ttt ettt ettt b et st b et e a ettt eeae e beenees 32
TESt SCEMATIOS .ccerueirriisuriseeisuninniisseistecssnessiessnessesssessssssssnssssssssesssassssssssassssssssassssssssassssssssassssssssases 33

11

Contents

TESE SCEIATIO ..ttt ettt ettt et e bt e sa e e bt e s it e e bt e s bb e eabeesubeebeesabeebeenaneans 33
SCENATIO TUNCLIONS ...ttt ettt ettt e et et e st e e aee e bt e beesabeesseeenbeasseeeseesnneans 35
TEETAtION STALEIMEIISeutiiiiiiiieiiie ettt ettt sttt e sat e et e s bt e e e saneenbeebeesaneens 36
StAte VATIADIESeiiiiiiiiieiee ettt ettt et st e bt et e ebeesaeeens 37
CTesK test system SUPPOIt HIDIATY ...coueeieenisieninenisnensenssnnnsenssnessnssssessaessssesssnsssssssssssssssssasssssssssses 39
Base services 0f the teSt SYSTEIMevuiiiiiiiiieiie ettt sttt 39
SYSEEM fUNCLIONStteeiiee ettt e e e e e et eessbeeesabeeesnseeeaseeesseesnseesseeennnes 39
TIME MOAEL ...ttt ettt et e sttt e sab e et e sabe e bt e sabeenseesnneens 43
Standard tESt @NZINES......cccuieuiiiiieiiieeie ettt ettt eite et e et e e beesteeebeeseeesbeessaessbaesseeesseensseeseensseans 62
41] 4 OO PP STUURRURSRPRO 62
IUAESITL .ttt et h e ettt ettt ettt e b aees 63
Types and parameters Of teSt ENEINEScccueeruieiiiieiiieiieie ettt e iee e eaeeeas 64
TTACIIE SETVICES ..eeeuvvieeuiieeeiieeeiteeetteeeiteeestteeetteesteeeessteesaseeeanseeeasseeasseeassaeansseeansseesssaesansseesseennns 99
TTACINZ CONIIOL......eiiiiiitieiie ettt ettt et e st et esabeeabeesabeesbeasnseenseesnneans 99
IMESSAZE LIACIIE.veeueieeireeiieeiieeiteeteeseeeesteestteebeesteeesseesssesasaessaeasseenssesnseessseasseessesnsaensseenseensns 106
Deferred reactions re@iStration SEIVICESe.uerueertierieeriierteeteesteenteeseeeteessteebeesssesseesseeeseennes 108
Interaction ChANMELSc.oiiiiiiiieiee ettt 109
INEETACTIONS TEGISTIATvieueieiiiieiie ettt ettt ettt et ettt et e st e eabeesateeabeesseeeabeesseeenseesseeenseas 115
Catcher functions re@iSteriNg SEIVICEcuuevuierrierieeirieeieeteesteeteesaeeseesseeeseesseeesseesseesseensens 126
Library of specification data tyPes......ccceeveeerveresssercsssercsssnrcsssicssassses 131
Standard FUNCHIONScc.eeiiiiiiieieeiee ettt et b et st e bt e b et esbeeneesaeenee 131
Specification reference creation fUNCHONeeoiieiiiiiiiiiieeieee e 132
Specification reference data type fUNCHION.........cccvieriieiiiiiiieiiecieee e 132
Specification reference copying fUNCHIONcc.cecuiriiriiriiriinieiieceee et 132
Specification reference comparing fUNCHIONS.ccuveeiieriieeiiienie ettt ere e e 133
Specification reference stringifying fUnCtioN.coccveeriiriiniiiiniinieeceeeeece s 133
Predefined specification data tyPeS........cccuieriieiiieiiieiiieeie ettt 133
(O] 1T) O USSP 133
INEEEET M UINLEZETveeeniiieeiiee ettt ettt e st e e st e e st e e b eeeaaeeeeseesnaneesnneeenns 135
SHOTE L USROTT ...ttt ettt et et esabe e e e eneeeneas 136

| 00T 7 B U) o T USSP 137
FLOAL ...ttt ettt et a e et at e et et e et e nteebeesateebeeenee 138
DIOUDIC ...ttt ettt a bt et een et e b e eaeenaeenees 139
VIOTAASE .ttt ettt ettt et e e st e et e e eat e e bt e sab e e bee e at e e bt e enbeebeeenteenneennee 140
UL ottt ettt et h e bt e st e s h et e e e e s et e bt e nt e e bt et e e nteeh e e bt en b e en e e bt et e eneenaeenees 141
(0710311]0) 1o GO OSSPSR 142
SEIIIIZ ettt ettt e ettt e ettt e e tt e e tt e e e bt e e e tae e e bt e e e taeennbeeeanbeeeenbaeeeaeeeanreeenns 143

Contents

LISt ettt h e et h e st et et eb e et esht e e e naee 152
St ettt e e e et — e e e e e — et e e e ———ee e e —tteeeanbaaeeeaaaaeeeeanbeaeeannaaeeeeanstaeeeaanns 157
1\ TSRS 161
SEC BraMIMATICS.ccuueiersererssercssrncssanssssarssssanssssassessssssssssssssssssssasssssasssssases 165

v

CTesK 2.2 Language Reference

Alphabetical Index

ACHIONS .t 71 1111 | SRRSO 66
addTraceToConsole...........ccccvrenneenns 100 isFindFirstSeriesOnlycccceeuveneee. 88
addTraceToFile.......c.cccoceeveriinicncnns 102 isStationaryStatecccceveevereeniennne 77
areDeferredReactionsEnabled............. 84 LinearTimeMark..........cccceeervuereenncnnne. 47
ASSETLION ..eeeveeniieeiieeiie et eiee e 42 maxTimeMarkcccoooeviieninnnnen. 53
ChannellDccccooervievienieieeieee 110 minTimeMarkcoccooveviniinenenne. 52
createDistributedTimeMark................ 57 observeState.........cceveeeiienieeiieieee, 79
createTimelntervalcccceeveneenen. 58 PtrFinish......ccooooniiniiie, 67
createTimeMarkcccoooeeniinninnnnen. 56 PtrGetState........ccceeevieeiiiiiniieiee 69
fiNish .o, 68 PtrInit.....ooeeiiiieieen 65
FinishModeccoceviiiiniinininene. 80 PtrIsStationaryStatec.cceceveenneenee. 76
getChannellDcccoeevvieiieeiiennns 113 PtrObserveStateccccovveeveeveeeeveennen. 78
getCurrentTimeMark ... 60 PtrRestoreModelState..............cccoeneeee. 74
GetCurrentTimeMarkFuncType.......... 59 PtrSaveModelStatecccceeveeennennne. 72
getFindFirstSeriesOnlyBound............. 90 ReactionCatcherFuncType 127
getFinishModeccocvevieeiiennennn. 82 registerReaction.........c.cccveeeveeeniennnnnns 118
ZEESTALE ... 70 registerReactionCatcher.................... 128
getStimulusChannelcc.co..... 117 registerReactionWithTimelnterval 121
getTimeFrameOfReferencelD 54 registerReactionWithTimeMark........ 119
getTSTimeModelccoevveveennennnnn. 46 registerStimulusWithTimelnterval 124
getWTIme......ooeviveeiieeeieeeee e 86 registerWrongReaction...................... 123

Alphabetical Index

releaseChannellD...........ccocceveeienns 114
removeTraceToConsole.................... 101
removeTraceToFile.........ccccoovenene. 103
restoreModelStatecccceeveeeeenen. 75
saveModelStatecccevveerieninienenns 73
setBadVerdict........ocoeeviiiiiiniiiee. 40
setDefaultCurrentTimeMarkFunction. 61
setDeferredReactionsMode................. 83
setFindFirstSeriesOnly..........c.ccc....... 87
setFindFirstSeriesOnlyBound.............. 89
setFinishMode........c.ccoocevievieninienens 81
setStimulusChannel........................... 116

setSystemTimeFrameOfReferenceName55

setTraceAccidental........ccceeeeeeeeennennn. 104

setTraceEncodingccceevvveeenennnen. 105
setTSTimeModelcccooceeviiinienin. 45
SEtWTIME....eoeieiiiieiieicceeeeeeee 85
systemTimeFrameOfReferencelD....... 51
TimeFrameOfReferencelD.................. 48
Timelntervalcccoooeviiiniiiiiiinen. 50
TimeMarkccoocveverieniiniiciinieceee 49
traceFormattedUserInfo................... 108
traceUserInfoccooeeviienininnin, 107
TSTimeModel.........cccceevieriiaiannen. 44
UniqueChannelccccvevvreiiennnnnns 112
unregisterReactionCatcher................. 129
unregisterReactionCatchers............... 130

WrongChannel.........cccccoceevenenncnnene 111

CTesK 2.2 Language Reference

Introduction

Introduction

SeC' is a Specification Extension of C programming language. It is developed specially for
supporting testing C software with CTesK based on UniTeskK testing method. Below main features
of the method are presented.

Testing servers for checking and demonstration of a proper software behavior meeting requirements
to the software. To be representative testing should cover a sufficient set of various situations and
conditions under that a software is checked.

UniTeskK testing method is a method for automated development tests checking whether a system
under test meets functional requirements, that define what externally observable effects the system
must produce when interacting with the environment by means of an interface of the system.

Functional requirements are described in the form of specification, which defines an interface of the
system under test and correct results producing by means of each element of the interface.
Specification is defined in computer readable form that is called formal specification. For C
software specification SeC is used. CTesK provides generation from SeC specification oracles on
C. Oracles are test components checking the system under test behavior for meeting specified
requirements.

For functional testing not only the implementation code coverage but a coverage of the functionality
of the system under test is important. SeC allows defining coverage criteria for functional
requirements described in specification. Based on them CTesK provides automatic estimation of
functional requirement coverage during testing.

For construction of relevant and representative set of various situations and conditions, under that
the behavior of the system under test is checked, UniTesK uses FSM models of the system under
test. SeC allows describing FSM models in the form, which is simple and compact and allows
reuse. CTesK provides the test engine implemented in C, which builds relevant and representative
test sequence using test component generated form SeC description of FSM model.

! Pronounced as [sek]

CTesK 2.2 Language Reference

General information about SeC

SeC? is a Specification Extension of C programming language. It is used for automated test
development based on computer readable specifications of software requirements. Additional SeC
constructions are compact and suitable for describing software requirements and test components. It
allows automating test development and reducing costs for training developers skilled in C
language.

SeC introduces specification types (see Specification types), invariants of types and global
variables, test scenarios (see Test scemarios) and three kinds of functions: specification (see
Specification functions, Deferred reactions), mediator (see Mediator functions) and scenario (see
Scenario functions) functions. They are defined in specification files with extension .sec and
declared in specification header files with extension .seh. Specification header files are included
into specification files by means of C preprocessor directive #include. Specification files can
contain ordinary C functions for auxiliary needs. For using in specification files special external
types or functions ordinary C headers files are included by means of C preprocessor directive
#include.

For the convenience of writing and reading of logical expressions, the implication operator => is
additionally introduced in SeC, which is a binary infix operator, whose priority is below that of the
disjunction operator ||, but is above the priority of the conditional operator 2:. An expression
x => y I8 equivalent to the expression !x || y, and in the process of its evaluation, similar to
evaluation of other logical operators, the rules of short logic are applied. The implication operator is
associative from left to right, i.e. the expression x => y => =z is equivalent to the expression
(x =>vy) => z.

% Ponounced as [sek]

Specifications

Specifications

Specifications are formal requirements for a system under test in form of data invariants and
behavior description.

Specifications can utilize either internal data of a system under test or its own specification data
model for description of requirements. Mediators are used to bind specification model data,
specification functions, and deferred reactions to data, functions, and reactions of a system under
test.

Specification types

Purpose
Specification data type combines a data type of C with basic functions for dealing with it: creating,
initializing, copying, comparing, stringifying, destroying.

Description

specification typedef base type new type =
{

.init = pointer to initializing function
, .Ccopy = pointer to copying function
, .compare = pointer to comparing function
, .to string = pointer to stringifying function
, .enumerator = pointer to enumerating function
.destroy = pointer to destroying function

Specification data types are defined by usual C-like typedef construction marked by
specification SeC keyword. This construction can contain several declarations with or without

10

CTesK 2.2 Language Reference

initializers. If initializer is omitted, it declares new specification data type, otherwise it defines new
specification data type with its own name.

Values of specification data types are located in a dynamic storage with automatic management. It
maintains reference counters for each specification data type object and automatically destroys
objects when there are no references to them.

Specification extension of C contains built-in incomplete specification data type object. It is the
base data type of all specification objects but no objects can be of this type. Type of reference to
Object (i. €. Object*) is used in the same way as void=*. Reference to any specification data type
can be casted to reference to object and vice versa. Note that behavior is not defined when object,
referenced as object*, is casted to incompatible data type.

Syntax
declaration ::= (((declaration specifiers)?
"specification"
(declaration specifiers)?
"typedef"

(declaration specifiers)?
)
| ((declaration specifiers)?
"typedef"
(declaration specifiers)?
"specification"
(declaration specifiers)?
)
)
(init declarator ("," init declarator)*)?

mwe.en
’

Semantic constraints

Specification data types cannot be local.
Names of specification data types belong to the same namespace as typedef-names.

Definition of specification data type with a given name (declarator with initializer) can
occur only once in all translation units (translation unit).

Initializer in definition of specification data type must look like the following:
= { .<field(1l)> = <expr>, .<field(2)> = <expr>, ... }.

Inside the curly braces there must a list (possibly empty) of constructions like
.<field(i)> = <expr>, separated by commas. <field(i)> can possesses one of the
values: init, copy, compare, to string, enumerate, Or destroy. <expr> must have
appropriate data type according to the field specified:

/* Object initializer type (initialize given <data> area) */
typedef void (*Init) (Object* ref, va list* arg list);

/* Object copier type (copy <data> from 'src' to 'dst') */
typedef void (*Copy) (Object* src, Object* dst);

/* Object comparer type (compare <data> of 'left' and 'right') */
typedef int (*Compare) (Object* left, Object* right);

/* Object stringifier type (make string representation of <data>) */
typedef String (*ToString) (Object* obj);

11

Specifications

/* Subobjects enumerator type

(enumerate objects belonging to the given one) */
typedef void (*Enumerate)

(Object* obj, void (*callback) (void* ref,void* par),

void* par

)
/* Object destructor type (free resources allocated by object) */
typedef void (*Destroy) (Object* obj);

Detailed information on functions to be used in an initializer can be found in “Library of
specification data types” section.

If field initializer is omitted in a specification data type definition, appropriate default
function is used. In default functions pointer to any data type (except specification,
functional, and void data types) are treated as pointer to a single value of this data type. It
means that all functions should be provided by the user when base data type is a pointer to
several values (examples are array or character string).

The following data types are prohibited to be used as base types for specification data types:
1. specification, functional, and incomplete,
2. unions, arrays, and structures, containing above-listed data types.

The following data types are prohibited too if one or more field initializers are omitted in a
specification data type definition:

3. unions and arrays of variable length,
4. structures and arrays, containing all above-listed data typed,
5. pointers to data types, listed in 2, 3, and 4.

If specification data type declaration contains keyword invariant, an invariant must be
declared for this data type (see Invariants of data types).

If at least one specification data type declaration contains invariant keyword, all
declarations and definition must contain this keyword.

Specification data types can be used only by reference, like incomplete data types of C. The
following are prohibited: declarations of variables of specification data types; unions,
structures, and arrays, containing fields or elements of specification data types; and so on.

Example

Declaration:

specification typedef struct {int* x, int* y} XY;

Definition:

specification typedef struct {int* x, int* y} XY =

{

N N N N

.init = initXY
.Copy = copyXY
.compare = compareXY

.to_string = to_stringXY
.destroy = destroyXY

12

CTesK 2.2 Language Reference

Invariants of types

Purpose

Invariants of data types are intended for description of data types constraints, used in specifications.
Data type invariant can be considered as common part of all pre- and postconditions of functions
depending on values of this data type. On the other hand, data type invariant can be considered as
subtype constraints ensuring data integrity.

Description

Definition of data type with invariant:

invariant typedef base type subtype;

Definition of invariant itself:

invariant (subtype param)

{

return boolean value;

}

Invariant call;

invariant (value to check)

Invariants of data types are declared by C-like typedef construction, marked by invariant SeC
keyword. This construction defines new data types names, like usual typedef. But as distinct from
typedef, range of defined data type not equals to range of the base data type, its a subrange of base
data type range. Thus invariant typedef defines not a synonym for base data type expression,
but a new data type with its own range.

Constraints of base data type range are described in a compound statement (compound_statement)
that syntactically and semantically equals to a function body without side effects, returning a
boolean value, and having one parameter of:

o defined subtype, if the base type is usual C data type,
o pointer to defined subtype, if the base type is specification data type.

Compound statement of invariant is marked by invariant modifier followed by the formal
parameter of appropriate type in parentheses. Type of returning value is fixed and thus not indicated
directly.

Invariant of data type can be checked for an expression of appropriate data type. Expression of
invariant call consists of invariant keyword followed by an expression to check in parenthesis.
Invariant call evaluates to true if a value of the expression to test satisfies invariant constraints, and
to false otherwise.

Syntax
Definition of data type with invariant:
declaration ::= ((declaration specifiers)?
"invariant"
(declaration specifiers)?
"typedef"

(declaration specifiers)?

)
13

Specifications

| ((declaration specifiers)?
"typedef"
(declaration specifiers)?
"invariant"
(declaration specifiers)?

)

(init declarator ("," init declarator)*)?

w.mn
’

Definition of data type invariant:

"invariant" " (" parameter declaration ")" compound statement ;

Invariant call:

"invariant" " (" assignment expr ")"

Semantic constraints

e Data type invariant cannot be defined for a local data type.

Data type must be defined by typedef construction before definition or call of this data type
invariant, and its declaration specifiers (declaration specifiers) must include
invariant SeC specifier (se declaration specifiers).

If at least one declaration of data type in a translation unit (translation unit) contains
invariant SeC specifier (se declaration specifiers), all declarations and definition
of this data type in all translation units must contains invariant specifier, and definition of
appropriate data type invariant must occurs once in all translation units.

Functional data types and void are prohibited as base types for data types with invariant.

If base data type in definition of data type with invariant is a specification type, parameter in
invariant definition is declared as pointer to defined data type. User can be sure that inside
invariant body this pointer is not NULL. For invariants of other data types (including pointer
to specification type) parameter in invariant definition is declared as defined data type.

Data type invariant call expression must contains in parenthesis an expression of the data
type being checking.

Example

Declaration:

invariant typedef int Nat;

or

invariant specification typedef int Nat;
Definition:

invariant (Nat n)

{

return n > 0;

}

or

invariant (Nat* n)

{
14

CTesK 2.2 Language Reference

return *n > 0;

}

Call:

Nat n = 1;

invariant (n);

Invariants of variables

Purpose

Invariants of variables are intended for describing constraints of values of global variables, used in
specifications. Variable invariant can be considered as common part of all pre- and postconditions
of functions depending on values of this variables. On the other hand, variable invariant can be
considered as variable constraints ensuring data integrity.

Description
Declaration of variable with invariant:

invariant data type variable;

Definition of invariant:

invariant (variable)

{

return boolean value;

}
Invariant call:

invariant (variable name)

If a global variable cannot possess all values of its data type range, the range should be constrained
by variable invariant. For that all declarations of such variables must be marked by invariant SeC
keyword to indicate that the declared variables have constrained range.

Range constraints are described in a compound statement (compound_statement) that syntactically
and semantically equals to a function body without side effects, without parameters, and returning a
boolean value.

Compound statement of invariant is marked by invariant modifier followed by the variable
identifier in parentheses. Type of returning value is fixed and thus not indicated directly.

Invariant of a variable can be checked for this variable value. Expression of invariant call consists
of invariant keyword followed by variable name in parenthesis. Invariant call evaluates to true
if a value of the variable satisfies invariant constraints, and to false otherwise.

Syntax

Declaration and definition of variable with invariant:

15

Specifications

(declaration specifiers)? "invariant" (declaration specifiers)?
(init declarator ("," init declarator)*)2 ";"

Definition of variable invariant:
"invariant" " (" <ID> ")" compound statement ;
Variable invariant call:

"invariant" " (" (assignment expr ("," assignment expr)*)? ")"

Semantic constraints
e Variable invariants can be defined only for global variables.

e Variable must be declared before definition or call of this variable invariant, and its
declaration specifiers (declaration specifiers) must include invariant SeC specifier
(se_declaration specifiers).

e [f definition or at least one declaration of variable contains invariant SeC specifier
(se _declaration specifiers), all declarations and definition of this variable in all
translation units (translation unit) must contains invariant specifier, and definition of
this variable invariant must occurs once in all translation units.

e Variable invariant definition and call expression must contain in parenthesis the name of the
appropriate variable as the only parameter.

e Invariant body must syntactically and semantically be equal to a function body without side
effects, without parameters, and returning a boolean value.
Example

Declaration of variable with invariant:

invariant int EvenNum = 2;

Definition:
invariant (EvenNum)
{
return EvenNum % 2 == 0;
}
Call:

invariant (EvenNum) ;

Specification functions

Purpose

Specification functions are intended for describing behavior of the system under test, experiencing
external actions throw a part of its interface. Specification functions describes behavior in form of
constraints of access to data, preconditions, coverage criteria, and postconditions.

16

CTesK 2.2 Language Reference

Description

Declaration:

specification signature access constraints;

Definition:

specification signature access constraints

{
auxiliary code
pre {...}
{
auxiliary code
coverage name 1 {...}

coverage name n {...}
{
auxiliary code
post {...}
auxiliary code

}

auxiliary code

}

auxiliary code

}
Call:

specification function name (arguments)

Specification functions are declared and defined in specification files and are marked by
specification SeC keyword. They can contain the following elements:

e Description of access constraints of the specification function to global variables and
parameters (see Access constraints).

e Precondition, describing when behavior of the system under test is defined (see
Preconditions).

e Coverage criteria, describing partition of the system under test behavior into functional
branches, when interaction is fulfilling throw a part of interface described by the
specification function (see Coverage criteria).

e Postcondition, describing constraints of results of the system under test functioning,
described by the specification function (see Postconditions).

e Auxiliary SeC code outside precondition, coverage criteria, and postcondition.

Specification functions are called in the same way as the usual functions. In the invocation point of
a specification function the following is performed in the specified order during a test run: check for
data type invariants for expressions with reads or updates access, check for variables with reads
or updates access, check for precondition, determining coverage elements for values of passed
argument, call for mediator set for this specification function, check for immutability of expressions
with reads access, check for data type invariants for expressions with writes or updates access,
check for variables with writes or updates access, check for postcondition.

Syntax
(declaration specifiers)?
"specification"
(declaration specifiers)?
declarator

(declaration)*

17

Specifications

compound statement

’

Semantic constraints

Names of specification functions belong to the same namespace as names of usual C
functions.

Specification function must be defined exactly once within all translation units
(translation unit).

For every global variable and parameter (or their parts), used in a specification function,
declaration of the function must contain appropriate access constraints
(se_access description, see Access constraints).

Compound statement of a specification function must contain exactly one postcondition
(se_post block statement, see Postconditions) after coverage criteria and precondition
blocks, if they present.

Compound statement of a specification function can contain no more than one precondition
(se pre block statement, see Preconditions) before coverage criteria (it they present)
and postcondition blocks; precondition must be followed by compound statement, or first
coverage criterion, or postcondition.

Compound statement of a specification function can contain several coverage criteria
(se_coverage block statement, see Coverage criteria) following one after another, after
precondition (if it present) and before postcondition; there can be no auxiliary code between
coverage criteria, last coverage criterion must be followed by compound statement or
postcondition.

Auxiliary code can occur in the compound statement of a specification function outside
precondition, coverage criteria, and postcondition, in the following points:

o before precondition or after coverage criteria, postcondition, and compound
statements containing coverage criteria and postcondition,

o in compound statement after precondition—before first coverage criterion or
postcondition (if coverage criteria is omitted), or after coverage criteria,
postcondition, and compound statements containing postcondition,

o 1in compound statement after last coverage criterion—before or after postcondition.
Specification function must have no side effects:
o values of global variables and data, passed by reference, must not change,

o dynamic storage, allocated in a specification function, must be freed at the same
nesting level (in the same compound statement):

- storage, allocated in precondition, coverage criteria, or postcondition, must be
freed in the same block,

- storage, allocated in the beginning of specification function, must be freed in its
ending after precondition, coverage criteria, postcondition, and compound
statements containing coverage criteria and postcondition,

- storage, allocated in compound statement after precondition, must be freed in the
end of this compound statement after coverage criteria, postcondition, and
compound statement containing postcondition,

18

CTesK 2.2 Language Reference

- storage, allocated in compound statement before postcondition, must be freed in
the end of this compound statement after postcondition.

e Declaration of specification function must contain signature, marked by specification
keyword, and access constraints (see Access constraints); access constraints must be equal
in all declarations of this specification function.

Example

Declaration:

specification double sqgrt spec(double x);

Definition:

specification
double sqrt spec(double x)
{
pre
{

return (x >= 0.0);

post
{
if (x == 0.0)
return (sqrt spec == 0.0);
return ((sgrt_spec >= 0.0)
&& fabs((sgrt spec*sqgrt spec - x) / x) < EPS);

Call:
sqrt spec(5.2)

Deferred reactions

Purpose

Deferred reaction are intended for description of behavior of the system under test, responding with
some delay for external actions. Deferred reactions describe behavior in form of constraints of
access to data, preconditions, and postconditions.

Description

reaction signature access constraints
{
auxiliary code
pre {...}
{
auxiliary code
post {...}
auxiliary code

}

19

Specifications

auxiliary code

}

Deferred reactions are declared and defined in specification files as functions without parameters,
marked by reactions SeC keyword, and returning pointers to specifications data types. They can
contain the following elements:

e Description of access constraints of the deferred reaction to global variables (see Access
constraints).

e Precondition, describing when appearance of such reactions is possible (see Preconditions).

e Postcondition, describing constraints of global variables that must be satisfied after
occurrence of this deferred reaction (see Postconditions).

e Auxiliary SeC code outside precondition and postcondition.

Syntax
(declaration specifiers)?
"reaction"
(declaration specifiers)?
declarator

(declaration)*
compound statement

’

Semantic constraints
e Names of deferred reactions belong to the same name space as names of usual C functions.

e Deferred reaction must be defined exactly once within all translation units
(translation unit).

e Deferred reactions must have no parameters and must return pointer to a specification data
type.
e For every global variable (or its parts), used in a deferred reaction, declaration of the

reaction must contain appropriate access constraints (se_access description, see Access
constraints).

e Compound statement of a deferred reaction must contain exactly one postcondition
(se post block statement, see Postconditions) after precondition block, if it present.

e Compound statement of a deferred reaction can contain no more than one precondition
(se pre block statement, see Preconditions) before postcondition block; precondition
must be followed by compound statement or postcondition.

e Auxiliary code can occur in the compound statement of a deferred reaction outside
precondition and postcondition, in the following points:

o in compound statement of reaction—before precondition or after postcondition and
compound statement containing postcondition,

o in compound statement after precondition—before or after postcondition.
e Deferred reaction must have no side effects:
o values of global variables must not change,

o dynamic storage, allocated in a deferred reaction, must be freed at the same nesting
level (in the same compound statement):

20

CTesK 2.2 Language Reference

- storage, allocated in precondition or postcondition, must be freed in the same
block,

- storage, allocated in the beginning of deferred reaction, must be freed in its
ending after precondition, postcondition, and compound statement containing
postcondition,

- storage, allocated in compound statement after precondition, must be freed in the
end of this compound statement after postcondition.

e Declaration of deferred reaction must contain signature, marked by reaction keyword, and
access constraints (see Access constraints); access constraints must be equal in all
declarations of this deferred reaction.

Example

int last message id = 1;

reaction Integer* incoming message ()
writes last message id

{
post {return last message id == *incoming message; }

}

Access constraints

Purpose

Access constraints are intended for description of the way in which specification functions and
deferred reactions use global variables, parameters, and expressions (l-values) with them. Access
constraints are used for checking system under test behavior correctness. SeC language supports
three types of access: read, write, and update.

Description
reads expression 1, ..., alias name = expression n,
writes expression 1, ..., alias name = expression n,
updates expression 1, ..., alias name = expression n,

Access constraints are described after specification function or deferred reaction signature. Modifier
reads 1s used to indicate read-only access, writes—write access, and updates—update access.
Access modifier affects all identifiers listed after it until next modifier or beginning of function or
reaction body. Aliases for constrained expressions (see Aliases) can be defined in access
constraints.

Syntax
se access_description ::= se access specifier se access
("," se access)*
7
se access_specifier ::= "reads" | "writes" | "updates" ;
se access ::= (se access _alias)? assignment expr ;

21

Specifications

Grammar of se_access_alias element can be found in Aliases section.

Semantic constraints

e In access constraints for a function or reaction the same expression cannot be used several
times with different access modifiers.

e If an expression has write access (writes modifier), it cannot be used in function or reaction
before post keyword.

e If an expression has update access (updates modifier), it possesses prevalue before post
keyword, i.e. value before interaction with system under test, described by the given
specification function, or value before occurrence of the given reaction. After post keyword
the expression possesses postvalue, i.e. value after interaction with system under test or after
occurrence of the reaction; prevalue then can be accessed via @ SeC operator (see
Preexpressions).

e [f an expression has read-only access (reads modifier), its value is accessible everywhere
inside function or reaction, and cannot change.

Example

invariant List *stck;

specification bool push spec(int 1)
reads i
updates stck

Aliases

Purpose

Aliases are intended to simplify reference to expressions with access constraints in specification
functions and deferred reactions.

Description

Aliases are defined by a mere assignment in access constraints. In a specification function or
deferred reaction aliases can be used in the same way as local variables.

Syntax

se access_alias ::= <ID> "="

Semantic constraints

e Alias identifier cannot coincide with parameters identifiers and must be unique within
access constraints of specification function or deferred reaction.

22

CTesK 2.2 Language Reference

Example

invariant List *stck;

specification bool pop spec (int *item)
updates stck

updates i = *item
Preconditions
Purpose

Precondition of a specification function describes when behavior of the system under test is defined
during interactions with it through a part of the interface, described by the function. During test run
precondition is checked every time when appropriate function of the system under test is invoked.
Violation of precondition indicates incorrectness of the test.

Precondition of a deferred reaction describes when appearance of such a reaction is possible.
During test run precondition of deferred reaction is checked every time when the reaction occurs.
Violation of precondition indicates inconsistency between behavior of the system under test and its
specification.

Description

pre

{

return boolean value;

}

Precondition in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same parameters as the specification function (deferred reactions have no
parameters) and returning a boolean value. These instructions must be enclosed in curly braces and
marked by pre keyword.

Syntax

se pre block statement ::= "pre" compound statement ;

Semantic constraints

e Specification function or deferred reaction can contain no more than one precondition,
defined before coverage criteria (if they present) and postcondition.

e Precondition can be omitted, that is equal to precondition, always returning true.

e Precondition must have no side effects, i.e. it cannot change values of global variables and
data, passed by reference.

¢ Instructions in precondition must be syntactically and semantically equal to a function body
with the same signature as the specification function or deferred reaction and returning a
boolean value.

23

Specifications

e Precondition cannot use expressions with write access (i.e. defined in access constraints with
writes specifier).

Example

specification double log (double x)
reads x

{
pre { return x > 0; }
post { ... }

Coverage criteria

Purpose

Coverage criteria are intended for criteria of requirements coverage description. Each coverage
criterion partitions behavior of the system under test during interactions with it through a part of the
interface, described by the specification function, into functionality branches. During test run
coverage criteria are used for evaluating reached testing completeness.

Description

coverage name

{

return {identifier, string literal};

}

Coverage criterion in SeC language is a set of instructions that syntactically and semantically equals
to a function body with the same parameters as the specification function and returning special
construction that looks like initialization of a structure with two fields. The construction consists of
identifier and string literal, separated by comma and enclosed in curly braces. Instructions of
coverage criterion must be enclosed in curly braces, marked by coverage keyword, and named.

To avoid repeated calculation of expressions that specify functional branches partition, construction
coverage (coverage name) can be used in following coverage criteria and postcondition. This
construction evaluates to identifier of reached functional branch of the specified coverage criterion.
It can be used in i f-else and switch operators of C language.

Syntax
se coverage block statement ::= ("default")?
"coverage"
<ID>

compound statement

Semantic constraints
e Specification function can contain several coverage criteria following one after another.

e Names of different coverage criteria must be unique within specification function.

24

CTesK 2.2 Language Reference

Coverage criteria must be defined after precondition (if it presents) and before
postcondition.

Coverage criteria can be omitted, that is equal to a single coverage criterion with a single
functional branch.

Instructions in coverage criterion must be syntactically and semantically equal to a function
body with the same signature as the specification function and returning special construction
that looks like initialization of a structure with two fields. The construction must consist of
identifier and string literal, separated by comma and enclosed in curly braces. The same
identifier or literal cannot be used for indicating different branches within the same coverage
criterion.

Coverage criterion must have no side effects, i.e. it cannot change values of global variables
and data, passed by reference.

Coverage criterion cannot use expressions with write access (i.e. defined in access
constraints with writes specifier).

Any set of parameters and global variables, allowable by precondition, must correspond to
one of functional branches, defined in coverage criterion.

Example

specification bool pop spec(int *item)

{

updates stck
writes i1 = *item

coverage c {
if (size List(stck) == 0)
return { empty, "empty stack" };

else if (size List(stck) == STACK SIZE)
return { full, "full stack" };
else

return { nonempty, "nonempty stack" };

}

post { ... }
}
Postconditions
Purpose

Postcondition of specification function is intended for description of constraints of results of the
system under test functioning during interactions with it through a part of the interface, described by
the specification function. During test run postcondition is checked every time after appropriate
interaction with the system under test. Violation of postcondition indicates inconsistency between
behavior of the system under test and its specification.

Postcondition of deferred reaction is intended for description of constraints of values of the reaction
and global variables after occurrence of this reaction. Violation of postcondition after occurrence of
the reaction and its mediator completion indicates inconsistency between behavior of the system
under test and its specification.

25

Specifications

Description

post

{

}

return boolean value;

Postcondition in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same parameters as the specification function (deferred reactions have no
parameters) and returning a boolean value. These instructions must be enclosed in curly braces and
marked by post keyword.

Syntax

se post block statement ::= "post" compound statement ;

Semantic constraints

Specification function or deferred reaction must have exactly one postcondition.

Postcondition must be defined after precondition (if it presents) and after the last coverage
criterion (if coverage criteria present).

Instructions in postcondition must be syntactically and semantically equal to a function body
with the same signature as the specification function or deferred reaction and returning a
boolean value.

Postcondition must have no side effects, i.e. it cannot change values of global variables and
data, passed by reference.

Postcondition and code after postcondition can use the following additional constructions:
e Preexpressions with @ operator (see Preexpressions),

e Value returned by the specification function (or value of the occurred reaction) is
accessible via identifier of this function (or reaction), with the exception of void
functions,

e Pseudovariable timestamp of TimeInterval type contains start and finish time marks
for invocation of mediator of the specification function, or time marks supplied on
deferred reaction registration.

Example

specification bool pop spec (int *item)

{

updates stck

updates i = *item
coverage ¢ { ... };
post {
if (size List(@stck) == 0)
return 0 == compare (@stck, stck) && !pop spec;
/* compare returns 0 for equal parameters */
else return (0

== compare (stck,
subList List (@stck,1l,size List(@stck))
)

&& i1 == value Integer(get List (@stck, 0))

&& pop_spec

26

CTesK 2.2 Language Reference

Preexpressions

Purpose

Preexpressions are used for specification of constraints of the system under test state before and
after test action, or before and after occurrence of deferred reaction.

Description

@expression

Entry of post keyword in a specification function is treated as a test action. Entry of post keyword
in deferred reaction is treated as an occurrence of the reaction. All instructions before post keyword
in the thread of execution are fulfilled before test action or occurrence of the reaction. Instructions
after post keyword are fulfilled after test action or occurrence of the reaction.

Preexpressions are exceptions from this rule. Preexpressions are marked by prefix operator @.
Identifiers of objects with write access cannot be used in preexpressions.

The following rules should be considered for preexpressions:
e @ operator has the same priority as other unary operators,

e Preexpression must be computable directly before post keyword in the thread of execution.
In particular, preexpressions can only contain identifiers of variables, declared before post
keyword.

Syntax

"@" cast expr ;

unary expr ::= postfix expr
| "++" unary expr
| "--" unary expr
| unary operator cast expr
| "sizeof" unary expr
| "sizeof" " (" type name ")"
| gcc_extension specifier cast expr

unary Operator Lr— "&" ‘ mxn | H+" | nw_mn n"w._.mn | mwn | H@H
cast _expr ::= unary expr
| "(" type name ")" cast expr

Semantic constraints

e @ operator can be used only after post keyword in the thread of execution.

27

Specifications

e Preexpression that is used in a postcondition, must be computable before this postcondition
in the thread of execution.

Example
specification void deposit spec (Account *acct, int sum)
reads sum
updates balance = acct->balance

updates *acct

pre { return sum > 0; }

post {
return balance == @balance + sum;

}

28

CTesK 2.2 Language Reference

Mediators

Mediators are intended for binding specification to implementation of the system under test, or to
specification of another level of abstraction. For convenience later in this reference we assume that
a system under test means directly implementation of a system under test, or its specification of
another level of abstraction.

Mediators do the following tasks: conversion of model representation of a test action into
implementation representation and conversion of implementation representation of reaction into
model representation, and synchronization of specification data model state with the system under
test state. Mediators of deferred reactions do only synchronization of states.

In SeC language mediators are implemented as mediator functions and catchers.

Mediator functions

Purpose

Mediator functions are implementation of mediators. Each mediator function binds specification
function or deferred reaction to a part of implementation of the system under test or to its
specification of another level of abstraction.

Description

mediator name for signature access constraints

{

auxiliary code
call { ... }
state { ... }

29

Mediators

}

auxiliary code

Mediator functions are marked by mediator for SeC keywords. An unique identifier—name of
the mediator function—must reside between these words. Each mediator function corresponds to a
specification function or deferred reaction. Signature and access constraints of this function or
reaction must be specified in declarations and definition of the mediator function.

Mediator function can contain:

Call block (marked by call keyword), implementing behavior, described in the
corresponding specification function, by means of performing test action.

State block (marked by state keyword), implementing synchronization of specification
data model state with the system under test state after performed test action or occurred
deferred reaction.

Auxiliary code before first or after the last named block.

Syntax

(declaration specifiers)?
"mediator" <ID> "for"

(declaration specifiers)?
declarator

(

declaration) *

compound statement

’

Semantic constraints

Mediator function names belong to the same namespace as names of usual C functions.

Mediator function must be defined exactly once within all translation units
(translation unit).

Specification function or deferred reaction must be declared before declaration or definition
of corresponding mediator function.

Declaration specifiers (declaration specifiers) and declarators (declarator) of all
declarations and definition of a mediator function must contain signature and access
constraints of the corresponding specification function or deferred reaction.

Mediator of a specification function must contain call block; state block may be omitted.
Mediator of a deferred reaction must contain state block; state block is not permitted.

If mediator contains both call and state blocks, state block must follows immediately after
call block.

Auxiliary code is permitted before first and after the last named block.

Example

stack *impl stack;

mediator push media for specification bool push spec(int 1)

{

updates stck

call {

return push(impl stack,i);
}
state {

30

CTesK 2.2 Language Reference

int k;

clear List(stck);

for (k = impl stack->size; k > 0;

append List (stck, create Integer (impl stack->elems[--k]))
);

Call blocks

Purpose

Call blocks of mediator functions implement behavior of the system under test, described in
corresponding specification functions, by means of performing test actions.

Description

call
{

return value;

}

Call block in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same signature and return type as the corresponding specification function.
These instructions must be enclosed in curly braces and marked by ca11 keyword.

Syntax

se call block statement ::= "call" compound statement ;

Semantic constraints
e (Call block is the mandatory block of mediators of specification functions.
e (Call block is not permitted in mediators of deferred reactions.

e Instructions in call block must be syntactically and semantically equal to a function body
with the same signature and return type as the corresponding specification function.

Example

mediator withdraw media for
specification int withdraw spec (Account *acct, int sum)
reads sum
updates acct->balance
updates *acct
{
call
{
return withdraw (acct, sum);
}
}

31

Mediators

State blocks

Purpose

State blocks of mediator functions implement synchronization of specification data model state with
the system under test state after performed test action or occurred deferred reaction.

Description

state

{
return;
}

State block in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same signature as the corresponding specification function, without return
value. These instructions must be enclosed in curly braces and marked by state keyword.

Syntax

se state block statement ::= "state" compound statement ;

Semantic constraints

e Instructions in state block must be syntactically and semantically equal to a function body
with the same signature as the corresponding specification function, without return value.

e Value returned by the specification function (or value of the occurred reaction) is accessible
via identifier of this function (or reaction), with the exception of void functions.

e Pseudovariable timestamp of TimeInterval type contains start and finish time marks for
invocation of call block of this mediator function, or time marks supplied on deferred
reaction registration.

Example

mediator pop media for
specification bool pop spec (int *item)
updates stck
writes 1 = *item
{
call {
return pop (impl stack,item);
}
state {
int k;
clear List(stck);
for (k = impl stack->size; k > 0;
append List (stck, create Integer (impl stack->elems[--k]))
);

32

CTesK 2.2 Language Reference

Test scenarios

Test scenarios define source data for tests building. Each test is a sequence of test actions, designed
to solve some testing problem. Usually such problem is formulated as testing of a system under test
behavior by performing test actions through a set of interface functions, until succeeding a given
level of coverage in accordance with criteria of specification coverage.

Test scenario

Purpose

Test scenario is intended for test building on basis of the given test engine and necessary data.

Description
Declaration:
scenario type identifier;
Definition:
scenario type identifier = initializer;
Call:
identifier(argc, argv);

In SeC language test scenario is defined in the same way as global variable which specifiers contain
scenario SeC keyword.

Type of test scenario specifies test engine and is indicated by an identifier, defined in typedef
construction.

The following corresponds to each test engine:

33

Test scenarios

o data type of information, necessary for test building, which is the base type in typedef
construction that defines test scenario type,

o function to run the test built by this test engine.
Test scenario is initialized in its definition by a value, appropriate for the given test engine.

Test is run by a function call construction, where the name of a function is the name of the test
scenario, and parameters are semantically equal to parameters of standard function

main (int argc, char** argv).

Test run construction evaluates to true, if the test completed correctly and no errors were found
during testing, and to false otherwise.

Syntax
(decl specifiers)?
"scenario"
(decl specifiers)?
(init declarator ("," init declarator)*)2 ";"

Semantic constraints

e Names of test scenarios belong to the same namespace as names of usual global variable of
C language.

e Test scenario must be defines exactly once within all translation units (translation unit).
e Test scenario cannot be defined locally.

e Type of test scenario must be specified by an identifier defined by typedef construction.

e Identifier of test scenario type is a name of a test engine.

e Full definition of a test engine requires definition of a function to run tests built by the
engine. This function must have the following signature:

bool start <test engine>(int argc
, char** argv
, <test engine>* td
)

e Initializer data type must be compatible with test scenario type.

e [f scenario type is a structure, it is possible to use dereferencing syntax of C99 standard in
spite of actually used C standard.

e Test scenario call looks like a call of a function with two parameters of int and charx**
types respectively. Second parameter must point to an array of character strings, terminated
by zero character; the last element of this array (and only last) must be a null pointer. First
parameter must be equal to size of the array without last element.

e Test scenario call evaluates to boolean value.

Example

Declaration:

scenario dfsm stack scenario;

Definition:

34

CTesK 2.2 Language Reference

scenario dfsm stack scenario =

{

.init = init stack scenario,

.getState = get stack scenario_state,
.actions = { push scen, pop scen, NULL },
.finish = finish stack scenario

}s

int main(int argc,char** argv)
{
if (!stack scenario(argc,argv))
return 1;
return 0;

Scenario functions

Purpose

Scenario functions are intended for description of test actions sequences to be executed in each test
situation reached during the testing. Scenario functions can also perform correctness check of
invoked system under test functions.

Description

scenario bool scenario function ()

{

return boolean value;

}

In SeC language scenario function is specified as a function without parameters, returning a boolean
value, and marked by scenario keyword. Scenario functions can perform additional checks on
basis of results of system under test functions execution. Scenario function must evaluate to true, if
the system under test behaves correctly, and to false otherwise. Test system automatically takes
into account postcondition checks of executed specification functions or occurred deferred
reactions, so scenario functions should not consider them.

Syntax
(declaration specifiers)?
"scenario"
(declaration specifiers)?
declarator

(declaration)*
compound statement ;

Semantic constraints

e Names of scenario functions belong to the same namespace as names of usual functions of C
language.

e Scenario function must be defined exactly once within all translation units
(translation unit).

35

Test scenarios

e Scenario functions must have no parameters and must return a boolean value.
e Scenario functions cannot be invoked directly.
e Scenario functions can contain the following constructions:

e [teration operators (see Iteration statements),

e State variables (see State variables).

Example

scenario bool push scen() {
iterate (int 1 = 0; 1 < 10; 1i++;) {
push spec(i);
}

return true;

}

Iteration statements

Purpose

Iteration statements are intended for enumeration of test actions in scenario functions.

Description

iterate (expression 1
; expression 2
; expression 3
; expression 4

)

Iteration statement syntactically looks like for statement of C language. Iteration statement starts
with iterate keyword followed by the following list in parenthesis, separated by semicolon:

e Declaration and initialization of iteration variable,
e Controlling expression,

e [teration expression,

e Filter expression.

All parts except first are not mandatory and can be omitted. Note that filter expression without
iteration expression can lead to infinite looping. Declaration are finished by the iteration body.

The following iteration statement:

iterate(var decl; control expr; iteration expr; filter expr)
iteration body

is similar in a certain sense to the following C code:

var decl;

for(; control expr; iteration expr) {
if (!filter expr) continue;
iteration body;

}
36

CTesK 2.2 Language Reference

Iteration variable are not local variables, they are a kind of state variables (see State variables).
Their values are remembered in a special data structure, associated with the current generalized
model state. These values become accessible as the model falls within the same generalized state.

Syntax

se iteration statement ::= "iterate"

" ("
declaration
(expression)?

mw.mn
’

(expression)?

mw.mn
’

(expression)?

") "

statement

Semantic constraints
e [teration statements can be used only in scenario functions.
e Controlling expression and filter expression must have boo1l data type, if they present.

e [teration variable cannot be of incomplete ok local data type and must be initialized.

Example

scenario bool push scen() {
iterate (int 1 = 0; i < 10; i++;) {
push spec(i);
}

return true;

}

State variables

Purpose

State variables are intended to store data, associated with generalized model state. Values of such
variables become accessible as the model falls within the same generalized state.

Description

stable type variable = value;

Declaration of a state variable starts with stable modifier followed by declaration of local
variables. The following code:

operator 1;
stable int i = 1;
operator 2;

equals to the following:

operator 1;
iterate(int i1 = 1;false;;)

{

37

Test scenarios

operator 2;

Syntax
(declaration specifiers)?
"stable"
(declaration specifiers)?
(init declarator ("," init declarator)*)2 ";" ;

Semantic constraints
e State variables can be used only in scenario functions.

e State variables cannot be of incomplete or local data type and must be initialized.

Example

scenario bool fibbonachi scen ()
{
stable int f1 = 0;
stable int f2
iterate(int i =

{

(I
=
S~ s
”

AN
Il
—

o
~

-

+
+
~

f2 = f2 + f1;

fl1 = £f2 - f1;

fibbonachi spec(fl);
}

return true;

38

CTesK 2.2 Language Reference

CTesK test system
support library

CTesK includes a support library for tests being developed. The library provides an interface for
interaction with the test system as well as a set of additional data types and functions. Header files
of the library are located in the include directory of CTesK distributive.

This section describes a part of the library interface intended for test developers use. Another part of
the interface defined in header files is intended for generated components of CTesK test system
only.

Base services of the test system

Base services provided by the test system are used via constructions of specification extension of C
language.

Base services of CTeskK test system included in the support library, consist of a set of data types and
functions defining test system time model, and of a small set of system functions of SeC language.

System functions

The following are system functions of SeC 2.2 language:
setBadVerdict

assertion

39

CTesK test system support library

setBadVerdict

setBadverdict function sets negative verdict of the current mediator call.

void setBadVerdict (const char* msg);

Parameters

msg

Comment describing the reason of negative mediator verdict. This comment appears in test
trace and can be used for simplifying test results analysis.

The parameter can possess NULL value. No comment appears in test trace in this case.

Description

setBadverdict function sets negative verdict of the current mediator call. Mediator must inform
test system by calling this function if it cannot perform its task due to some reason.

setBadVerdict function can be invoked several times during the execution of one mediator.
setBadverdict function can be invoked out of mediator call. In this case a comment appears in test

trace as a user message without other side effects.

Additional information
Header file: ts/ts.h
Library: ts

See also

System functions

Example
/*

* Example of setBadVerdict usage.

*/

/*
* Implementation contains "errMsg" state variable,
* which can possess limited number of wvalues.

*/

const char* errMsg;

/*
* "errMsg" variable are modelled by "errno" variable
* of enumeration data type.

*/

enum ErrorKind { NoError, ErrorKindl, ErrorKind2 } errno;

/*
* "updateSystemState" function synchronizes value of "errno"
* model variable with value of "errMsg" implementation variable.
*/

void updateSystemState ()

{

if (errMsg == NULL) { errno = NoError; return; }
if (strcmp(errMsg,"ErrorKindlMsg") == 0) { errno = ErrorKindl; return; }
if (strcmp(errMsg,"ErrorKind2Msg") == 0) { errno = ErrorKind2; return; }

setBadVerdict ("errMsg has bad value");
40

CTesK 2.2 Language Reference

}

mediator function media for specification void function spec(void)
updates errno

{
call {

function () ;
}
state {

updateSystemState () ;
}

41

CTesK test system support library

assertion

assertion function examines the value of the specified expression and terminates execution of the
application if it evaluates to 0.

void assertion(int expr, const char* format, ...);

Parameters
expr
Expression that should not be equal to 0. Application is terminated if this condition is violated.

format

Format string for the message about violation of the condition. Message is constructed from the
format string and additional parameters in the same way as by printf function from C standard
library.

Description

assertion function examines the specified condition and terminates execution of the application if
the condition is violated.

In the case of violation, the specified message appears either in test trace (if the function is invoked
within test scenario) or in stderr stream otherwise. Test trace is closed correctly after the message
and the application is terminated by exit (1) system call.

Any abnormal test scenario termination must be performed via assertion call, otherwise test trace
integrity is not guaranteed.

Additional information

Header file: utils/assertion.h
Library: utils
See also

System functions, Tracing services

42

CTesK 2.2 Language Reference

Time model

CTesK test system supports three modes of time handling:
e Without accounting time,
e Linear time model,
e Distributed time model.

To define time points, the test system uses time marks. Time mark is an abstract value that can
either be associated with the real time in some way, or be used just to put time points to an order.

Each time mark belongs to a frame of time. All time marks within the same time frame are put in
linear order. Time marks of different time frames are not ordered.

In linear time mode, all time marks are considered to belong to the only time frame. Thus all time
marks are put in linear order.

In distributed time mode, time marks can belong to different time frames. This mode is the most
general, but at the price of the least efficient managing algorithms.

Time model managing in CTesK is performed by the following functions:
setTSTimeModel
getTSTimeModel

Time marks are defined with the following data types, constants, and functions:
Data types

LinearTimeMark

TimeFrameOfReferencelD
TimeMark

Timelnterval

Constants

systemTimeFrameOfReferencelD

minTimeMark
maxTimeMark
Functins

getTimeFrameOfReferencelD

setSystemTimeFrameOfReferenceName

createTimeMark

createDistributedTimeMark

createTimelnterval

To determine time mark for the current moment of time, the following functions are used:

getCurrentTimeMark

setDefaultCurrentTimeMarkFunction

43

CTesK test system support library

TSTimeModel

TSTimeModel enumeration data type defines all possible modes of time handling by CTesK test
system.

typedef
enum TSTimeModel

{
NotUseTSTime,
LinearTSTime,
DistributedTSTime
} TSTimeModel;

Description

When dfsm or ndfsm test engine is used, the test system by default:
e works without accounting time, if “deferred reactions” property of test engine is disabled,
e uses linear time model, if “deferred reactions” property is enabled.

Time handling mode can be changed in scenario initialization function.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, setTSTimeModel, getTSTimeModel

44

CTesK 2.2 Language Reference

setTSTimeModel

setTSTimeModel function changes the mode of time handling by CTesK test system.

TSTimeModel setTSTimeModel (TSTimeModel time model) ;

Parameters

time model

New time handling mode for the test system.

Return value

Previous time handling mode.

Description

When dfsm or ndfsm test engine is used, the test system by default:

e works without accounting time, if at least one of the saveModelState, restoreModelState, or
isStationaryState test scenario fields are not defined or initialized by a NULL pointer,

e uses linear time model, if all of the saveModelState, restoreModelState, and
isStationaryState test scenario fields are defined by non-NULL pointers.

Time handling mode can be changed in scenario initialization function.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TSTimeModel, setTSTimeModel, dfsm test engine

45

CTesK test system support library

getTSTimeModel

getTSTimeModel function returns current time handling mode of CTesK test system.

TSTimeModel getTSTimeModel (void);

Return value

Current time handling mode of CTesK test system.

Additional information
Header file: ts/timemark.h
Library: ts

See also
Time model, TSTimeModel, getTSTimeModel

46

CTesK 2.2 Language Reference

LinearTimeMark

LinearTimeMark data type is used for identification of time marks within a time frame.

typedef unsigned long LinearTimeMark;

Description

Values of this data type can represent any characteristic of time points within a time frame. For
example, number of seconds (or milliseconds) from the given moment.

If one value of LinerTimeMark data type is greater than another value, the time point described by
the former time mark is guaranteed to be later than the time point described by the latter time mark.
If two values are equal, positional relationship of appropriate time points is unknown: time points
can either coincide or not.

Additional information
Header file: ts/timemark.h
Library: ts

See also

Time model, TimeMark

47

CTesK test system support library

TimeFrameOfReferencelD

TimeFrameOfReferenceID type defines identifiers of time frames.

typedef int TimeFrameOfReferencelD;

Description

The test system is functioning in a dedicated time frame with predefined identifier
systemTimeFrameOfReferencelD. In a linear time mode this is the only permitted identifier of time
frame.

Other identifiers can be defined in distributed time mode by getTimeFrameOfReferencelD function.
The function returns an identifier of a time frame by its name. Two calls to this function with the
same name produces the same identifier. Call to this function with a NULL pointer returns an unique
time frame identifier, that is guaranteed not to be returned twice.

Usually each computer has its own time frame. In this case the network name of the computer can
be used as the name of its time frame.

For uniformity of handling time frames identifiers, a symbolic name can be assigned to the
predefined identifier by setSystemTimeFrameOfReferenceName function.

If a name was assigned to the dedicated time frame of the test system, each call to
getTimeFrameOfReferencelD with this name returns systemTimeFrameOfReferencelD.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, systemTimeFrameOfReferencelD, getTimeFrameOfReferencelD,
setSystemTimeFrameOfReferenceName

48

CTesK 2.2 Language Reference

TimeMark

TimeMark structure defines the type of time mark, used in the test system.

typedef struct TimeMark TimeMark;

struct TimeMark

{
TimeFrameOfReferencelID frame;
LinearTimeMark timemark;

bi

Description

Time mark is characterized by an identifier of time frame and a value indicating the time point
within this time frame.

One time mark is less than another time mark when and only when both time marks belong to the
same time frame and the value of timemark field of the former time mark is less than the value of
that field of the latter time mark.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeFrameOfReferencelD, LinearTimeMark, minTimeMark, maxTimeMark,
createTimeMark, createDistributedTimeMark

49

CTesK test system support library

Timelnterval

TimeInterval data type defines time interval between the given two time marks.

typedef struct TimelInterval TimeInterval;

struct TimelInterval

{
TimeMark minMark;
TimeMark maxMark;

bi

Description

TimeInterval data type defines time interval between minMark and maxMark time marks. Both
time marks are required to belong to the same time frame and minMark must be less or equal to
maxMark. Boundary time marks are included in the interval.

For indicating minimal or maximal possible time mark, special constants minTimeMark and
maxTimeMark must be used.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeMark, createTimelnterval, minTimeMark, maxTimeMark

50

CTesK 2.2 Language Reference

systemTimeFrameOfReferencelD

systemTimeFrameOfReferenceID constant defines an identifier of the time frame dedicated for the
test system.

extern const TimeFrameOfReferencelID systemTimeFrameOfReferencelD;

Description

Identifier of the time frame dedicated to the test system, can be assigned a symbolic name by
setSystemTimeFrameOfReferenceName function. If a name was assigned to the dedicated time
frame of the test system, each call to getTimeFrameOfReferencelD with this name returns
systemTimeFrameOfReferencelD.

Additional information
Header file: ts/timemark.h
Library: ts

See also

Time model, TimeFrameOfReferencelD, setSystemTimeFrameOfReferenceName

51

CTesK test system support library

minTimeMark
minTimeMark constant is guaranteed to be less than any other time mark of any time frame.

extern const TimeMark minTimeMark;

Description

minTimeMark constant is a dedicated value of TimeMark data type that is guaranteed to be less than
any other time mark regardless of its time frame. minTimeMark constant is equal to itself only.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeMark, maxTimeMark

52

CTesK 2.2 Language Reference

maxTimeMark

minTimeMark constant is guaranteed to be greater than any other time mark of any time frame.

extern const TimeMark maxTimeMark;

Description

maxTimeMark constant is a dedicated value of TimeMark data type that is guaranteed to be greater
than any other time mark regardless of its time frame. maxTimeMark constant is equal to itself only.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeMark, maxTimeMark

53

CTesK test system support library

getTimeFrameOfReferencelD

getTimeFrameOfReferenceID function returns an identifier of a time frame that corresponds to the
specified name.

TimeFrameOfReferenceID getTimeFrameOfReferencelID(const char* name);

Parameters

name
Name of the time frame.
The parameter can be a NULL pointer. If so, the function returns an unique time frame identifier
that is guaranteed not to be returned twice.
Return value
Identifier of the time frame with the given name. Repeated calls to this function with the same name
evaluates to the same identifier.
Description

getTimeFrameOfReferencelID function returns an identifier of a time frame by its name. Two calls
to this function with the same name produces the same identifier. Call to this function with a NULL
pointer returns an unique time frame identifier.

getTimeFrameOfReferencelID function can be invoked only in distributed time model mode.

Usually each computer has its own time frame. In this case the network name of the computer can
be used as the name of its time frame.

For uniformity of handling time frames identifiers, a symbolic name can be assigned to the
predefined identifier by setSystemTimeFrameOfReferenceName function.

If a name was assigned to the dedicated time frame of the test system, each call to
getTimeFrameOfReferencelD with this name returns systemTimeFrameOfReferencelD.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TSTimeModel, TimeFrameOfReferencelD, setSystemTimeFrameOfReferenceName,
systemTimeFrameOfReferencelD

54

CTesK 2.2 Language Reference

setSystemTimeFrameOfReferenceName

setSystemTimeFrameOfReferenceName function sets the name of the time frame dedicated for the
test system.

bool setSystemTimeFrameOfReferenceName (const char* name);

Parameters

name
Name of the time frame dedicated for the test system.

The parameter cannot be a NULL pointer.

Return value

The function evaluates to false, if the given name was already used to identify other time frame,
and to true otherwise.

Description

setSystemTimeFrameOfReferenceName function sets the name of the time frame dedicated for the
test system. All subsequent calls to getTimeFrameOfReferencelD function returns
systemTimeFrameOfReferencelD.

Time frame dedicated to the test system can have several names simultaneously.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TSTimeModel, TimeFrameOfReferencelD, getTimeFrameOfReferencelD,
systemTimeFrameOfReferencelD

55

CTesK test system support library

createTimeMark

createTimeMark function creates a time mark in the time frame dedicated for the test system.

TimeMark createTimeMark (LinearTimeMark timemark);

Parameters

timemark

Mark of a time point within the time frame dedicated for the test system.

Return value

The function returns a time mark within the time frame dedicated for the test system, identified by
timemark internal mark.

Description

createTimeMark function creates a time mark in the time frame identified by
systemTimeFrameOfReferencelD and with timemark internal mark.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, LinearTimeMark, TimeMark, systemTimeFrameOfReferencelD,
createDistributedTimeMark

56

CTesK 2.2 Language Reference

createDistributedTimeMark

createDistributedTimeMark function creates a time mark in the specified time frame.

TimeMark createDistributedTimeMark (
TimeFrameOfReferencelD frame,
LinearTimeMark timemark

) ;
Parameters

frame

Time frame identifier of a time mark being created.

timemark

Mark of a time point within the frame time frame.

Return value

The function returns a time mark in the time frame identified by frame and with timemark internal
mark.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeFrameOfReferencelD, LinearTimeMark, TimeMark, createTimeMark

57

CTesK test system support library

createTimelnterval

createTimeInterval function creates a time interval with the specified bounds.

TimeInterval createTimeInterval (TimeMark minMark,TimeMark maxMark) ;

Parameters

minMark

Time mark of the lower bound of the interval.

maxMark

Time mark of the upper bound of the interval.

Return value

The function returns a time interval with the specified bounds.

Description

createTimeInterval function creates a time interval between minMark and maxMark time marks.
Both time marks must belong to the same time frame and minMark must be less than maxMark.
Boundary time marks are included to the interval.

For indicating minimal or maximal possible time mark, special constants minTimeMark and
maxTimeMark must be used.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, Timelnterval, TimeMark, createTimeMark, createDistributedTimeMark,
minTimeMark, maxTimeMark

58

CTesK 2.2 Language Reference

GetCurrentTimeMarkFuncType

GetCurrentTimeMarkFuncType data type is used to set up the function, evaluating time mark of the
current moment of time.

typedef TimeMark (*GetCurrentTimeMarkFuncType) (void);

Description

GetCurrentTimeMarkFuncType data type is used to set up the function, evaluating time mark of the
current moment of time.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeMark, setDefaultCurrentTimeMarkFunction

59

CTesK test system support library

getCurrentTimeMark

getCurrentTimeMark function returns a time mark corresponding to the current moment of time
within the given process.

TimeMark getCurrentTimeMark (void);

Return value

The function returns a time mark corresponding to the current moment of time within the given
process.

Description

The function returns a time mark corresponding to the current moment of time within the given
process. The function is used by the test system for automatic evaluation of a time interval,
containing a specification function call.

By default a current time mark belongs to the time frame dedicated for the test system. Mark within
the time frame is calculated as number of seconds since 00:00:00, January 1, 1970 (as value of time
system function).

This behavior can be redefined by setDefaultCurrentTimeMarkFunction function.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, TimeMark, createTimeMark, createDistributedTimeMark,
setDefaultCurrentTimeMarkFunction, systemTimeFrameOfReferencelD

60

CTesK 2.2 Language Reference

setDefaultCurrentTimeMarkFunction

setDefaultCurrentTimeMarkFunction function set up the user-defined function, evaluating time
mark for the current moment of time within the given process.

GetCurrentTimeMarkFuncType setDefaultCurrentTimeMarkFunction (
GetCurrentTimeMarkFuncType new func

)7

Parameters

new_func

Pointer to a function to use for time mark evaluation of the current moment of time within the
given process.

The parameter must be not NULL.

Return value

The function returns a pointer to the previously used current time mark evaluating function.

Description

setDefaultCurrentTimeMarkFunction function set up the user-defined function, evaluating time
mark for the current moment of time within the given process. All subsequent calls of
getCurrentTimeMark function return time marks, evaluated by that function.

The user-defined function is used for automatic evaluation of a time interval, containing a
specification function call.

Additional information

Header file: ts/timemark.h
Library: ts
See also

Time model, GetCurrentTimeMarkFuncType, getCurrentTimeMark

61

CTesK test system support library

Standard test engines

CTesK 2.2 includes two test engines: dfsm and ndfsm. They allow to test a wide class of software
— from simple systems without internal state to distributes systems with asynchronous interfaces.

dfsm

The dfsm test engine is based on traversal of finite state machine. Finite state machine, used for test
building, is defined explicitly by defining function to evaluate current scenario state and a set of test
actions.

During test run the dfsm applies the test actions that can change scenario state. The dfsm
automatically keeps track of all state changes and constructs a finite state machine in accordance to
test process. All reaches scenario states become the states of the machine, and transitions of the
machine are marked by appropriate test actions.

The dfsm test engine finishes the testing when it performed all test actions, defined by the user, in
all states of the machine reachable from the starting state.

For this condition to be possible, the following constraints must be satisfied:
e Finiteness

Number of states, reachable from the starting state by performing test actions from the
defined set, must be finite.

e Determinancy

Performing the same test action in any state of the system must lead the system to the same
state.

e Strong connectivity
Any scenario state is reachable from any other scenario state by performing test actions.

A set of test actions is defined by scenario functions (see Scenario functions).

The dfsm data type of test scenario is used in initialization of a test scenario, based on the dfsm test
engine. This data type is a structure with the following fields:

init

finish

getState

actions

saveModelState

restoreModelState

isStationaryState

observeState
The only mandatory field is actions, defining a set of test actions.

Additional parameters of the dfsm test engine can be tuned by the following functions:
62

CTesK 2.2 Language Reference

setFinishMode
setDeferredReactionsMode
setWTime

setFindFirstSeriesOnly

A list of parameters is passed to the test scenario on its invocation. The dfsm test engine has several
standard parameters affected its behavior. Standard parameters must precede user parameters. The
dfsm test engine processes standard parameters and passes the rest of parameters to the scenario
initialization function. In CTesK 2.2 the dfsm test engine supportes the following standard
parameters:

-t <file-name>

-tc

-uend

--trace-accidental

--find-first-series-only

ndfsm

The ndfsm test engine, comparing with dfsm, works correctly with a wider class of finite state
machines, in particular, with finite state machines having deterministic strongly connected complete
spanning submachine:

e Spanning submachine
A spanning submachine contains all reachable scenario states.
e Complete submachine

For each scenario state and an allowable test action a complete submachine either contains
all transitions from this state marked by this test action or does not contain such transions at
all.

A set of test actions is defined by scenario functions (see Scenario functions).

The ndfsm data type of test scenario is used in initialization of a test scenario, based on the ndfsm
test engine. This data type is a structure with the following fields:

getState
actions

saveModelState

restoreModelState

isStationaryState

observeState

The only mandatory field is actions, defining a set of test actions.

63

CTesK test system support library

Additional parameters of the ndfsm test engine can be tuned by the following functions:
setFinishMode
setDeferredReactionsMode
setWTime

setFindFirstSeriesOnly

A list of parameters is passed to the test scenario on its invocation. The ndfsm test engine has the
same standard parameters affected its behavior. Standard parameters must precede user parameters.
The ndfsm test engine processes standard parameters and passes the rest of parameters to the
scenario initialization function. In CTesK 2.2 the ndfsm test engine supportes the following
standard parameters:

-t <file-name>

-tc

-uend

--trace-accidental

--find-first-series-only

Types and parameters of test engines

This section describes the types and parameters using by dfsm and ndfsm standard test engines.

64

CTesK 2.2 Language Reference

Ptrinit

ptrInit data type specifies test scenario initialization function type.

typedef bool (*PtrInit) (int, char**);

Description

Initialization function takes an array of parameters, semantically similar to argc and argv
parameters of main standard function, and returns a boolean value. It evaluates to true if
initialization completed successfully, and to false otherwise.

Additional information
Header file: ts/engine.h
Library: ts

See also

dfsm test engine, ndfsm test engine, init field

65

CTesK test system support library

init
init field contains a pointer to test scenario initialization function.

PtrInit init;

Description

Initialization function takes an array of parameters, semantically similar to argc and argv
parameters of main standard function. It can use them for test scenario tuning.

Normally initialization function performs the following actions:
¢ initialization of the system under test,
e initialization of specification data model,
e initialization of scenario data,
e setting mediators for specification functions and reactions used in this test scenario.

Initialization function returns a boolean value. It must evaluate to true if initialization completed
successfully, and to false otherwise. In the latter case test scenario is terminated, and finalization
function is not invoked.

Initialization function is allowed to contain specification functions calls, performing initialization of
the system under test, specification or scenario. If deferred reactions support mode is set a test
engine makes serialization of all stimuli sent in the initialization function call and all reactions
received.

init field can be initialized by a NULL pointer or can be not initialized at all. It behaves like an
empty initialization function returning true.

Additional information

Header file: ts/dfsm.h, ts/ndfsm.h

Library: ts

See also

dfsm test engine, ndfsm test engine, Ptrlnit, finish field

66

CTesK 2.2 Language Reference

PtrFinish

ptrFinish field specifies test scenario finalization function type.

typedef void (*PtrFinish) (void);

Description

Scenario finalization function has no parameters and no return value. It intended for freeing
resources after scenario completion.

Scenario finalization function is allowed to contain specification functions calls, freeing resources
of the system under test, specification or scenario. If deferred reactions support mode is set a test
engine makes serialization of all stimuli sent in the finalization function call and all reactions
received.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, finish field

67

CTesK test system support library

finish
finish field contains a pointer to test scenario finalization function.

PtrFinish finish;

Description

Scenario finalization function has no parameters and no return value. It intended for freeing
resources after scenario completion.

Normally scenario finalization function performs the following actions:
e freeing resources of the system under test, allocated by the test scenario,
e freeing resources of specification data model,
e freeing resources of the test scenario.
finish field can be initialized by a NULL pointer or can be not initialized at all. It behaves like an

empty finalization function.

Additional information
Header file: ts/dfsm.h, ts/ndfsm.h
Library: ts

See also

dfsm test engine, ndfsm test engine, PtrFinish, finish field

68

CTesK 2.2 Language Reference

PtrGetState

PtrGetState data type specifies type of function, evaluating current test scenario state.

typedef Object* (*PtrGetState) (void);

Description

Evaluation test scenario state function has no parameters and returns an object of a specification
type.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, getState field

69

CTesK test system support library

getState

getstate field contains a pointer to a function, evaluating current test scenario state.

PtrGetState getState;

Description

Evaluation test scenario state function has no parameters and returns an object of a specification
data type.

It is important to take into account determinancy constraint of dfsm test engine or presense of
deterministic strongly connected complete spanning submachine of ndfsm test engine when
evaluating test scenario state.

getstate field can be initialized by a NULL pointer or can be not initialized at all. The dfsm and
ndfsm test engines consider this as scenario with a single state.

Additional information

Header file: ts/dfsm.h, ts/ndfsm.h

Library: ts

See also

dfsm test engine, ndfsm test engine, PtrGetState

70

CTesK 2.2 Language Reference

actions

actions field contains an array of scenario functions, ended with a NULL pointer.

ScenarioFunctionID actions([];

Description

actions field contains an array of scenario functions, ended with a NULL pointer. See Scenario
functions for more details.

actions field is mandatory for initialization. Last element of the array must be a NULL pointer.

Additional information
Header file: ts/dfsm.h, ts/ndfsm.h
Library: ts

See also

dfsm test engine, ndfsm test engine,

71

CTesK test system support library

PtrSaveModelState

PtrSaveModelState data type specifies type of function, returning specification data model state.

typedef Object* (*PtrSaveModelState) (void);

Description

Function for saving specification data model state has no parameters and returns an object of a
specification data type.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, saveModelState field

72

CTesK 2.2 Language Reference

saveModelState

saveModelstate field contains a pointer to function for saving specification data model state.

PtrSaveModelState saveModelState;

Description

Function for saving specification data model state has no parameters and returns an object of a
specification data type. The object must contain the whole state of specification data model. This
object is used then by a function for restoring specification data model state to completely restore
the state.

saveModelstate field can be initialized by a NULL pointer or can be not initialized at all. It makes
testing with deferred reactions impossible.

Additional information

Header file: ts/dfsm.h, ts/ndfsm.h

Library: ts

See also

dfsm test engine, ndfsm test engine, PtrSaveModelState, restoreModelState field

73

CTesK test system support library

PtrRestoreModelState

PtrRestoreModelState data type specifies type of a function to restore specification data model
state.

typedef void (*PtrRestoreModelState) (Object*);

Description

The function takes an object of a specification data type and restores the state of specification data
model using this object. The function does not return a value.

Additional information

Header file: ts/engine.h

Library: ts

See also

dfsm test engine, ndfsm test engine, restoreModelState field

74

CTesK 2.2 Language Reference

restoreModelState

restoreModelState field contains a pointer to function, restoring specification data model state.

PtrRestoreModelState restoreModelState;

Description

Function for restoring specification data model state takes an object of a specification data type and
restores the state of specification data model using this object. The object is guaranteed to be
previously constructed by a function for saving specification data model state. The function for
restoring state does not return a value.

restoreModelState field can be initialized by a NULL pointer or can be not initialized at all. It
makes testing with deferred reactions impossible.

Additional information

Header file: ts/dfsm.h, ts/ndfsm.h

Library: ts

See also

dfsm test engine, ndfsm test engine, PtrRestoreModelState, saveModelState field

75

CTesK test system support library

PtrisStationaryState

PtrIsStationaryState data type specifies type of a function for checking model state stationarity.

typedef bool (*PtrIsStationaryState) (void);

Description

Function for checking model state stationarity has no parameters and returning a boolean value.

Additional information
Header file: ts/engine.h
Library: ts

See also

dfsm test engine, ndfsm test engine, isStationaryStaty field

76

CTesK 2.2 Language Reference

isStationaryState

isStationaryState field contains a pointer to function for checking model state stationarity.

PtrIsStationaryState isStationaryState;

Description

Function for checking model state stationarity has no parameter and evaluates to true, if current
model state is stationary, and to false otherwise.

Model state is called stationary, if the target system that meets the model cannot initiate interaction
in this state.

isStationaryState field can be initialized by a NULL pointer or can be not initialized at all. It
makes testing with deferred reactions impossible.

Additional information
Header file: ts/dfsm.h, ts/ndfsm.h
Library: ts

See also

dfsm test engine, ndfsm test engine, PtrIsStationaryState

77

CTesK test system support library

PtrObserveState

PtrObserveState data type specifies type of function for synchronization of model state with state
of the system under test after stabilization time.

typedef void (*PtrObserveState) (void);

Description

Model state synchronization function has no parameters and no return value.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, observeState field

78

CTesK 2.2 Language Reference

observeState

observestate field contains a pointer to function for synchronization of model state with state of
the system under test after stabilization time.

PtrObserveState observeState;

Description

Model state synchronization function has no parameters and no return value. It is invoked in the end
of stabilization time after the test system initiates next test action and the target system comes to a
stationary state. Synchronization function can invoke one or more specification functions that read
state of the system under test but not change it. Interactions initiated during synchronization counts
in serialization process as well as previous test actions.

observestate field can be initialized by a NULL pointer or can be not initialized at all. No
synchronization is performed in this case.

Additional information
Header file: ts/dfsm.h, ts/ndfsm.h
Library: ts

See also

dfsm test engine, ndfsm test engine, PtrObserveState

79

CTesK test system support library

FinishMode

FinishMode enumeration data type defines possible modes of test engine finalizing.

typedef enum

{
UNTIL ERROR,

UNTIL END
} FinishMode;

Description
FinishMode enumeration data type defines possible modes of test engine finalizing.
First mode (unTIL ERROR) indicates that testing is finished immediately after first error detection.

Second mode (unTIL END) indicates that testing is continued after detection of non-critical error
and is finished just on reaching desired coverage criteria.

By default test engines are operating in UNTIL ERROR mode.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setFinishMode, getFinishMode, ‘-uerr’ standard parameter,
‘-uend’ standard parameter

80

CTesK 2.2 Language Reference

setFinishMode

setFinishMode function sets test engine finalization mode.

FinishMode setFinishMode(FinishMode finish mode) ;

Parameters
finish mode

New test engine finalization mode.

Return value

Previous test engine finalization mode.

Description

setFinishMode function sets test engine finalization mode. By default test engine is operating in
UNTIL ERROR mode.

Finalization mode can be changed at any moment during test system operation. Mode change
affects only following errors and does not affect previous ones.

getFinishMode function can be used to access the value of current finalization mode.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setFinishMode, getFinishMode, ‘-uerr’ standard parameter,
‘-uend’ standard parameter

81

CTesK test system support library

getFinishMode

getFinishMode function returns test engine current finalization mode.

FinishMode getFinishMode (void);

Return value

Current test engine finalization mode.

Description
getFinishMode function returns current test engine finalization mode.

setFinishMode function can be used to change the value of current finalization mode.

Additional information
Header file: ts/engine.h
Library: ts

See also

dfsm test engine, ndfsm test engine, FinishMode, setFinishMode, ‘—uerr’ standard parameter,
‘-uend’ standard parameter

82

CTesK 2.2 Language Reference

setDeferredReactionsMode

setDeferredReactionsMode function sets deferred reactions support mode of test engine.

bool setDeferredReactionsMode (bool enable);

Parameters

enable

If this parameter is true, support for deferred reactions is turned on, otherwise off.

Return value

The function returns previous value of support mode for deferred reactions of test engine.

Description

setDeferredReactionsMode function sets deferred reactions support mode of test engine. Support
for deferred reactions cannot be turned on if some of the saveModelState, restoreModelState, or
isStationaryState fields of test scenario are not defined or are initialized by a NULL pointer.

By default deferred reactions support mode is:

e off, if some of the saveModelState, restoreModelState, or isStationaryState fields of test
scenario are not defined or are initialized by a NULL pointer,

e on, if all of the saveModelState, restoreModelState, or isStationaryState fields of test
scenario are initialized by a non-NULL pointer.

Deferred reactions support mode can be changed only within test scenario initialization function.

areDeferredReactionsEnabled function can be used to access current value of deferred reactions
support mode.

Additional information
Header file: ts/engine.h

Library: ts

See also

dfsm test engine, ndfsm test engine, areDeferredReactionsEnabled, saveModelState field,
restoreModelState field, isStationaryState field

83

CTesK test system support library

areDeferredReactionsEnabled
areDefferedReactionsEnabled function returns current deferred reactions support mode of test
engine.
bool areDeferredReactionsEnabled(void);
Return value
areDeferredReactionsEnabled function returns current deferred reactions support mode of test
engine.
Description

areDeferredReactionsEnabled function returns current deferred reactions support mode of test
engine.

setDeferredReactionsMode function can be used to change deferred reactions support mode.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setDeferredReactionsMode

84

CTesK 2.2 Language Reference

setWTime

setWTime function sets waiting period of a test engine for a target system to stabilize.

time t setWTime (time t secs);

Parameters

secs
Waiting period for the target system stabilization, in seconds.

Value of the parameter must be non-negative integer number.

Return value

The function returns previous value of waiting period for the target system stabilization.

Description

setWTime function sets waiting period for the target system stabilization. The test engine waits
specified time after each test action for all information about deferred reactions to be gathered and
the target system to stabilize.

By default waiting period is equal to 0.

Waiting period ca be changed only within test scenario initialization function.

getWTime function can be used to get current value of waiting period.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, getWTime

85

CTesK test system support library

getWTime
getWTime function returns waiting period of a test engine for a target system stabilization.

time t getWTime(void);

Return value

getWTime function returns waiting period of a test engine for a target system stabilization.

Description
getWTime function returns waiting period of a test engine for a target system stabilization.

setWTime function can be used to change waiting period for the target system stabilization.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setWTime

86

CTesK 2.2 Language Reference

setFindFirstSeriesOnly

setFindFirstSeriesOnly function sets FindFirstSeriesOnly property of a test system.

bool setFindFirstSeriesOnly(bool new value);

Parameters

new_value

Value of FindFirstSeriesOnly property of the test system.

Return value

The function returns previous value of FindFirstSeriesOnly property of the test system.

Description

setFindFirstSeriesOnly function sets FindFirstSeriesOnly property of the testing system.
During serialization, if the property is false, the test system constructs all possible sequences of
interactions and checks whether they all lead to the same specification data model state. In other
words, it checks for determinancy of the model. When it is known (for some reason) that all
allowable sequences of interactions lead to the same state, it is possible to set
FindFirstSeriesOnly property to true, thus optimizing test system operation. For example, when
the model consists the only stationary state, the indicated above condition is certainly satistied and
it is possible to set FindFirstSeriesOnly property to true.

By default the property is false.

FindFirstSeriesOnly property can be changed only during test scenario operation, including test
scenario initialization function. Changes of this property before test scenario start will not affect its
behavior.

isFindFirstSeriesOnly function can be used to get current value of the property.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, isFindFirstSeriesOnly

87

CTesK test system support library

isFindFirstSeriesOnly

isFindFirstSeriesOnly function returns current value of FindFirstSeriesOnly property of a
test system.

bool isFindFirstSeriesOnly(void);

Return value

isFindFirstSeriesOnly function returns current value of FindFirstSeriesOnly property of the
test system.

Description

isFindFirstSeriesOnly function returns current value of FindFirstSeriesOnly property of test
system.

setFindFirstSeriesOnly function can be used to change value of the FindFirstSeriesOnly
property.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setFindFirstSeriesOnly

88

CTesK 2.2 Language Reference

setFindFirstSeriesOnlyBound

setFindFirstSeriesOnlyBound function sets FindFirstSeriesOnlyBound property of a test
system.

int setFindFirstSeriesOnly(int bound);

Parameters
bound

Value of FindFirstSeriesOnlyBound property of the test system.

Return value

The function returns previous value of FindFirstSeriesOnlyBound property of the test system.

Description

setFindFirstSeriesOnlyBound function sets FindFirstSeriesOnlyBound property of the test
system.

During serialization, if the property FindFirstSeriesOnlyBound is zero, the test system constructs
all possible sequences of interactions and checks whether they all lead to the same specification
data model state.

During serialization, if the property FindFirstSeriesOnlyBound is positive and the number of
interactions is less than FindFirstSeriesOnlyBound, the test system constructs all possible
sequences of interactions and checks whether they all lead to the same specification data model
state. If the number of interactions is greater than or equal to FindFirstSeriesOnlyBound, the test
system considers the only possible sequence of interations.

setFindFirstSeriesOnlyBound (0) call is equal t0 setFindFirstSeriesOnly(false) call.
setFindFirstSeriesOnlyBound(1)Caﬂisequalu)setFindFirstSeriesOnly(true)CaH.

By default the property is 0.

FindFirstSeriesOnlyBound property can be changed only during test scenario operation,
including test scenario initialization function. Changes of this property before test scenario start will
not affect its behavior.

getFindFirstSeriesOnlyBound function can be used to get current value of the property.

Additional information
Header file: ts/engine.h

Library: ts

See also

dfsm test engine, ndfsm test engine, setFindFirstSeriesOnly, getFindFirstSeriesOnlyBound

89

CTesK test system support library

getFindFirstSeriesOnlyBound

getFindFirstSeriesOnlyBound function returns current value of FindFirstSeriesOnlyBound
property of a test system.

int getFindFirstSeriesOnlyBound(void);

Return value

getFindFirstSeriesOnlyBound function returns current value of FindFirstSeriesOnlyBound
property of the test system.

Description

getFindFirstSeriesOnlyBound function returns current value of FindFirstSeriesOnlyBound
property of the test system.

setFindFirstSeriesOnlyBound function can be wused to change value of the
FindFirstSeriesOnlyBound property.

Additional information

Header file: ts/engine.h
Library: ts
See also

dfsm test engine, ndfsm test engine, setFindFirstSeriesOnlyBound

90

CTesK 2.2 Language Reference

‘—t’ standard parameter

‘-t <file-name>’ standard parameter adds the specified file to the set of devices for receiving test
trace. If file name is not specified or the file cannot be opened for write, test scenario is abnormally
terminated.

During test scenario operation set of devices for receiving test trace can be changed by functions for
tracing control.

If scenario parameters contain several standard parameters for trace saving, trace will be sent to all
specified devices.

If scenario parameters do not contain standard parameters for trace saving, it has the same effect if
they contain ‘—tt’ standard parameter.

All devices added to the set by standard scenario parameters are automatically removed after the
test scenario finish.

See also

3 2

dfsm test engine, ndfsm test engine, —tc standard parameter,
‘—tt” standard parameter, ‘—nt’ standard parameter, Tracing services, Tracing control,
addTraceToFile, removeTraceToFile

91

CTesK test system support library

‘~tc’ standard parameter

‘~tc’ standard parameter adds console to the list of devices for receiving test trace. Console means
standard output stream of the process the test system operates in.

During test scenario operation set of devices for receiving test trace can be changed by functions for
tracing control.

If scenario parameters contain several standard parameters for trace saving, trace will be sent to all
specified devices.

If scenario parameters do not contain standard parameters for trace saving, it has the same effect if
they contain ‘—tt’ standard parameter.

All devices added to the set by standard scenario parameters are automatically removed after the
test scenario finish.
See also

dfsm test engine, ndfsm test engine, ‘—t <file-name>’ standard parameter, ‘—tt’ standard parameter,
‘—nt’ standard parameter, Tracing services, Tracing control, addTraceToFile, removeTraceToFile

92

CTesK 2.2 Language Reference

‘—tt’ standard parameter

‘~tt’ standard parameter adds a file with the automatically generated name ‘<scenario name>-
YYYY-MM-DD--HH-MM-SS.utt’ to the list of devices for receiving test trace. If the file with that
name cannot be opened for write, test scenario is abnormally terminated.

During test scenario operation set of devices for receiving test trace can be changed by functions for
tracing control.

If scenario parameters contain several standard «-tt» parameters, only one of them will be taken
into account.

If scenario parameters contain several standard parameters for trace saving, trace will be sent to all
specified devices.

If scenario parameters do not contain standard parameters for trace saving, it has the same effect if
they contain ‘-tt’ standard parameter.

All devices added to the set by standard scenario parameters are automatically removed after the
test scenario finish.
See also

dfsm test engine, ndfsm test engine, ‘—t <file-name>’ standard parameter, ‘—tc’ standard parameter,
‘—nt’ standard parameter, Tracing services, Tracing control, addTraceToFile, removeTraceToFile

93

CTesK test system support library

‘—nt’ standard parameter
‘-nt’ standard parameter disables tracing.
‘-nt’ standard parameter can not be used with ‘-t’, ‘~tc’ or ‘~tt’ standard parameters.

During test scenario operation set of devices for receiving test trace can be changed by functions for
tracing control.

If scenario parameters do not contain standard parameters for trace saving, it has the same effect if
they contain ‘—tt’ standard parameter.

See also

dfsm test engine, ndfsm test engine, ‘—t <file-name>’ standard parameter, ‘—tc’ standard parameter,
‘—tt” standard parameter, Tracing services, Tracing control, addTraceToFile, removeTraceToFile

94

CTesK 2.2 Language Reference

‘—uerr’ standard parameter

‘—uerr’ standard parameter sets the value of scenario finalization mode. The value can be changed
by setFinishMode at test scenario initialization and during its operation.

If scenario parameters contain several standard parameters for scenario initialization mode, only last
of them will be taken into account by the test engine.

The ndfsm test engine allows to set the value of the ‘~uerr’ standard parameter, which stands for
the maximum permitted number of the errors. The format -uerr=number of errors is used for
this purpose.

See also

dfsm test engine, ndfsm test engine, ‘—uend’ standard parameter, setFinishMode

95

CTesK test system support library

‘~uend’ standard parameter

‘—uend’ standard parameter sets the value of scenario finalization mode. The value can be changed
by setFinishMode at test scenario initialization and during its operation.

If scenario parameters contain several standard parameters for scenario initialization mode, only last
of them will be taken into account by the test engine.

See also

dfsm test engine, ndfsm test engine, ‘—uerr’ standard parameter, setFinishMode

96

CTesK 2.2 Language Reference

‘--trace-accidental’ standard parameter

‘~--trace-accidental’ standard parameter turns tracing of information about uncertain
transitions on.

The tracing information about uncertain transitions can be changed by the setTraceAccidental
function at test scenario initialization and during its operation.

By default the tracing information about uncertain transitions is turned off.

See also

dfsm test engine, ndfsm test engine, setTraceAccidental

97

CTesK test system support library

‘--find-first-series-only’ standard parameter

‘—-find-first-series-only’ standard parameter (‘-ffso’ for short) sets FindFirstSeriesOnly
property of the test system. It means that during serialization the test system does not construct all
possible sequences of interactions and checks whether they all lead to the same specification data
model state, but uses the only allowable sequence of interactions.

The value of FindFirstSeriesOnly property can be changed by the setFindFirstSeriesOnly
function at test scenario initialization and during its operation.

By default the property if false.

See also

dfsm test engine, ndfsm test engine, setFindFirstSeriesOnly

98

CTesK 2.2 Language Reference

Tracing services

Tracer of CTesK test system provides a possibility to store information about test process for its
subsequent analysis. For that all components of the test system automatically traces information
about their work in a special format. Then report generator uses the test trace for testing results
analysis and to building different kinds of reports. More information about report generator can be
found in “CTesK 2.2: User’s Guide”.

For a user the tracer provides tracing control interface and message tracing interface.

Tracing control

Tracing control functions are divided into two classes: trace saving control functions and trace
contents control functions.

Trace saving control functions are operates as follows. Test trace can be simultaneously saved to
several devices. CTesK 2.2 supports two kinds of devices—console (as standard output stream of
the process the test system operates within) and file.

The tracer saves test trace to devices included in the set of devices for trace saving. To add a device
in the set, functions from addTraceTo. .. group are used. If the specified device already belongs to
the set, its entry counter is incremented.

To remove a device from the set of devices for trace saving, functions from removeTraceTo. ..
group are used. If the specified device was added to set several times, the operation just decrements
its entry counter. The device will be actually removed from the set only when its entry counter
becomes equal to zero.

The set of devices for trace saving can be changed when no one test scenario is running. In
particular, the set cannot be changed within test scenario initialization function.

Trace saving control functions:

addTraceToConsole

removeTraceToConsole
addTraceToFile

removeTraceToFile

Trace contents control functions specify set of the tracer’s messages and their format. In CTesK 2.2
the only available trace contents control function is:

setTraceAccidental

Function to set trace character encoding is:

setTraceEnconding

99

CTesK test system support library

addTraceToConsole

addTraceToConsole function adds the console to the set of devices for trace saving.

void addTraceToConsole(void);

Description

addTraceToConsole adds the console to the set of devices for trace saving. If the console already
belongs to the set, its entry counter is incremented.

Console is the standard output stream of the process the test system operates within.

addTraceToConsole function can be invoked only when no one test scenario is running.

Additional information

Header file: ts/c_tracer.h
Library: tracer
See also

Trace services, Trace control, removeTraceToConsole, addTraceToFile, removeTraceToFile

100

CTesK 2.2 Language Reference

removeTraceToConsole

removeTraceToConsole function removes the console from the set of devices for trace saving.

void removeTraceToConsole(void);

Description

removeTraceToConsole function removes the console from the set of devices for trace saving. If
its entry counter is greater than unit, the counter is decremented and console will not be actually
removed from the set.

Console is the standard output stream of the process the test system operates within.

removeTraceToConsole function can be invoked only when no one test scenario is running.

Additional information

Header file: ts/c_tracer.h
Library: tracer
See also

Trace services, Trace control, addTraceToConsole, addTraceToFile, removeTraceToFile

101

CTesK test system support library

addTraceToFile

addTraceToFile function adds the specified file to the set of devices for trace saving.

bool addTraceToFile(const char* name);

Parameters

name
Name of the file to be added to the set of devices for trace saving.

The parameter cannot be a NULL pointer.

Return value

The function returns true if the file was added successfully, and false otherwise. A reason for a
false result, for example, can be impossibility to open a file with the specified name to write.
Description

addTraceToFile function adds the specified file to the set of devices for trace saving. If the file
already belongs to the set, its entry counter is incremented.

The function return false if the file cannot be opened to write.

addTraceToFile function can be invoked only when no one test scenario is running.

Additional information
Header file: ts/c_tracer.h

Library: tracer

See also

Trace services, Trace control, removeTraceToFile, addTraceToConsole, removeTraceToConsole

102

CTesK 2.2 Language Reference

removeTraceToFile

removeTraceToFile function removes the specified file from the set of devices for trace saving.

bool removeTraceToFile(const char* name);

Parameters

name
Name of the file to be removed from the set of devices for trace saving.

The parameter cannot be a NULL pointer.

Return value

The function returns false if a file with the specified name does not belong to the set of devices for
trace saving, and true otherwise.

Description

removeTraceToFile function removes the specified file from the set of devices for trace saving. If
its entry counter is greater than unit, the counter is decremented and the file will not be actually
removed from the set.

removeTraceToFile function can be invoked only when no one test scenario is running.

Additional information
Header file: ts/c_tracer.h

Library: tracer

See also

Trace services, Trace control, addTraceToFile, addTraceToConsole, removeTraceToConsole

103

CTesK test system support library

setTraceAccidental

setTraceAccidental function turns tracing of information about uncertain transitions on or off.
Uncertain transitions are transitions corresponding to those scenario functions calls, which does not
produce specification calls.

bool setTraceAccidental (bool enable);

Parameters

enable
The function turns uncertain transitions tracing on if the parameter equals to true, and off’
otherwise.

Return value

The function returns previous value of the property of uncertain transitions tracing.

Description
setTraceAccidental function turns tracing of information about uncertain transitions on or off.
By default the tracer does not save information about uncertain transitions.

setTraceAccidental function can be invoked only when no one test scenario is running.

Additional information

Header file: ts/c_tracer.h
Library: tracer
See also

Trace services, Trace control

104

CTesK 2.2 Language Reference

setTraceEncoding

setTraceEncoding function sets trace character encoding.

void setTraceEncoding(const char *encoding);

Parameters

encoding

The identifier of the trace character encoding.

Description

setTraceEncoding function sets trace character encoding. By default, character encoding of the
trace is UTF-8.

A proper trace character encoding should be set in order to display localized functional branches
names, subsystems names or user messages correctly in the reports on the tests executed.
Additional information

Header file: ts/c_tracer.h

Library: tracer

See also

Trace services, Trace control

105

CTesK test system support library

Message tracing

CTesK 2.2 includes the only kind of tracer messages, available to the user. These messages are
called user messages. They play an auxiliary part and are used mainly for manual test trace analysis.
But some error reports show user messages to simplify analysis. More information about test
reports can be found in “CTesK 2.2: User’s Guide”.

The following functions are used for tracing user messages:

traceUserlnfo

traceFormattedUserInfo

106

CTesK 2.2 Language Reference

traceUserInfo

traceUserInfo function saves the user message in the test trace.

void traceUserInfo(const char* info);

Parameters
info

Pointer to a character string, followed by a zero character, which contains a user message.

Description

traceUserInfo function saves the user message in the test trace. User messages play an auxiliary
part and are used mainly for manual test trace analysis. But some error reports show user messages
to simplify analysis. More information about test reports can be found in “CTesK 2.2: User’s
Guide ™.

Additional information

Header file: ts/c_tracer.h
Library: tracer
See also

Trace services, Trace control

107

CTesK test system support library

traceFormattedUserinfo

traceUserInfo function saves the formatted user message in the test trace.

void traceFormattedUserInfo(const char* format, ...):

Parameters

format

Pointer to a character string, followed by a zero character, which contains a format of a user
message. The string can contain any of the conversion specifiers supported by the standard
function print £ () and the special specifier $ (obj) to convert a specification object into a
string. All the $ (ob7j) specifiers shall precede the printf () specifiers.

Description

traceFormattedUserInfo function formats and saves the user message in the test trace. User
messages play an auxiliary part and are used mainly for manual test trace analysis. But some error
reports show user messages to simplify analysis. More information about test reports can be found
in “CTesK 2.2: User’s Guide”.

Additional information

Header file: ts/c_tracer.h
Library: tracer
See also

Trace services, Trace control

Deferred reactions registration services

CTesK test system supports testing of systems with deferred reactions. Systems with deferred
reactions are systems which can participate in several interactions simultaneously or can initiate
interactions with their environment themselves.

One of the important task when testing systems with deferred reactions is gaining all necessary
information about interactions with the target system. This information is requested by CTeskK test
system to check whether the target system behavior conforms to its specification, because these are
the interactions which reflect behavior of the target system with deferred reactions.

The test system automatically registers all interactions initiated by calls of specification functions
within the test system process. All other interactions must be registered by the test developer in a
special test system component—interactions registrar.

Each interaction with the target system is characterized by the channel, in which it occurs. The test
system uses identifiers of interaction channels to identify them.

For father convenience of deferred reactions registration, the test system provides catcher functions
registering service.

108

CTesK 2.2 Language Reference

Interaction channels

Each interaction with the target system is characterized by the channel, in which it occurs. All
interactions within the same channel are linearly ordered. Thus the test system assumes that within
the same channel the first registered interaction has occurred earlier than the second one.

Identifiers of interaction channels, used for identifying channels within the test system, has
ChannellD data type.

There are two predefined constants of this data type:

WrongChannel

UnigueChannel

To allocate a channel identifier and then free it, the following functions are intended:

getChannellD
releaseChannelID

109

CTesK test system support library

ChannellD

ChannelID data type is used for identification of interaction channels within the test system.

typedef long ChannellID;

Description

ChannelID data type is used for identification of interaction channels within the test system. There
are two constants of this data type: WrongChannel and UniqueChannel.

getChannellD function returns a newly allocated channel identifier. When the identifier becomes
unnecessary, it can be freed by releaseChannellD function.

A channel identifier is correct when it is equal to UniqueChannel constant, or it was returned by
getChannellD function and is not equal to WrongChannel.

Additional information
Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interaction channels, WrongChannel, UniqueChannel,
getChannellD, releaseChannellD

110

CTesK 2.2 Language Reference

WrongChannel

WrongChannel constant indicates an incorrect interactions channel identifier.

extern const ChannelID WrongChannel;

Description

WrongChannel constant indicates an incorrect interactions channel identifier. This constant is
playing an auxiliary part, for example, getChannellD function returns the constant if it cannot
allocate new channel identifier.

Additional information

Header file: ts/register.h
Library: ts
See also

Deferred reactions registration services, Interaction channels, ChannellD, UniqueChannel,
getChannellD, releaseChannellD

111

CTesK test system support library

UniqueChannel

UniqueChannel constant indicates an unique channel. Only one interaction can occur in a unique
channel, and other interactions cannot occur in it channel in principle.

extern const ChannelID UniqueChannel;

Description

UniqueChannel constant indicates an unique channel. Only one interaction can occur in a unique
channel, and other interactions cannot occur in it channel in principle. This constant is frequently
used when interaction channels have no sense for the target system modeling.

Additional information

Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interaction channels, ChannellD, WrongChannel,
getChannellD, releaseChannellD

112

CTesK 2.2 Language Reference

getChannellD

getChannelID function returns a newly allocated interactions channel identifier.

ChannelID getChannelID(void);

Return value

getChannelID function returns a newly allocated interactions channel identifier if it can, or
WrongChannel otherwise.

Description

getChannelID function returns a newly allocated interactions channel identifier. If it cannot
allocate an identifier, it returns WrongChannel constant.

No longer necessary channel identifier can be freed by releaseChannellD function.

Additional information

Header file: ts/register.h
Library: ts
See also

Deferred reactions registration services, Interaction channels, ChannellD, WrongChannel,
UniqueChannel, releaseChannellD

113

CTesK test system support library

releaseChannellD

releaseChannelID function frees the specified interactions channel identifier.

void releaseChannelID(ChannelID chid):

Parameters
chid
Channel identifier to be freed.
The parameter must be a channel identifier, returned previously by getChannellD function.

Description

releaseChannelID function frees the specified interactions channel identifier, returned previously
by getChannellD function.

Additional information

Header file: ts/register.h

Library: ts

See also

Deferred reactions registration services, Interaction channels, ChannellD, WrongChannel,
UniqueChannel, getChannellD

114

CTesK 2.2 Language Reference

Interactions registrar

The test system automatically registers all interactions initiated by means of specification functions
calls within the test system process. Interactions are considered to occur in a channel specified by
StimulusChannel property. To control the property the following functions are intended:

setStimulusChannel

getStimulusChannel

By default the property is equal to UniqueChannel.

All other interactions must be registered by the test developer in the interaction registrar by means
of the following functions:

reqgisterReaction

registerReactionWithTimeMark

registerReactionWithTimelnterval

registerWrongReaction

registerStimulusWithTimelnterval

115

CTesK test system support library

setStimulusChannel

setStimulusChannel function set the value of stimulusChannel property.

ChannelID setStimulusChannel (ChannelID chid);

Parameters
chid

Interactions channel identifier to be used by the test system when automatically registering
interactions.

The parameter must be a correct channel identifier.

Return value

The function returns previous value of stimulusChannel property.

Description

setStimulusChannel function set the value of stimulusChannel property. StimulusChannel
property contains a channel identifier to be used by the test system for identifying a channel for
interactions, initiated by means of specification function calls within the test system process. By
default this property is equal to UniqueChannel.

To access current value of stimulusChannel property, getStimulusChannel function is intended.

Additional information

Header file: ts/register.h
Library: ts
See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
UniqueChannel, getStimulusChannel

116

CTesK 2.2 Language Reference

getStimulusChannel

getStimulusChannel function returns the value of stimulusChannel property.

ChannelID getStimulusChannel (void);

Return value

The function returns the value of stimulusChannel property.

Description

getStimulusChannel function returns the value of stimulusChannel property. StimulusChannel
property contains a channel identifier to be used by the test system for identifying a channel for
interactions, initiated by means of specification function calls within the test system process. By
default this property is equal to UniqueChannel.

To change the value of stimulusChannel property, setStimulusChannel function is intended.

Additional information
Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
UniqueChannel, setStimulusChannel

117

CTesK test system support library

registerReaction

registerReaction function is intended for registration of reactions, received from the target
system. Reaction is an interaction initiated by the target system.

void registerReaction (

ChannellID chid,
const char* name,
SpecificationID reactionID,
Object* data

)
Parameters
chid
Identifier of an interactions channel, in which the reaction has occurred.

The parameter must be a correct channel identifier.

name
Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionlD.

reactionID

Reaction identifier of the registered interaction.

data
Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.

Description

registerReaction function is intended for registration of reactions, received from the target
system. Reaction is an interaction initiated by the target system.

The main properties of interaction are reaction name reactionID and data data, received during the
interaction. Data type of the received data must coincide with data type of the reaction return value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about receiving incorrect reaction by means of registerWrongReaction function.

Additional information
Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
registerReactionWithTimeMark, registerReactionWithTimelnterval, registerWrongReaction

118

CTesK 2.2 Language Reference

registerReactionWithTimeMark

registerReactionWithTimeMark function is intended for registration of reactions, received from
the target system, specifying time mark of occurrence moment. Reaction is an interaction initiated
by the target system.

void registerReactionWithTimeMark (

ChannelID chid,
const char* name,
SpecificationID reactionID,
Object* data,
TimeMark mark

)7

Parameters

chid
Identifier of an interactions channel, in which the reaction has occurred.
The parameter must be a correct channel identifier.

name

Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionlD.

reactionID

Reaction identifier of the registered interaction.
data

Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.
mark

Time mark of occurrence moment.

Description

registerReactionWithTimeMark function is intended for registration of reactions, received from
the target system, specifying time mark of occurrence moment. Reaction is an interaction initiated
by the target system.

The main properties of interaction are reaction name reactionID and data data, received during the
interaction. Data type of the received data must coincide with data type of the reaction return value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about receiving incorrect reaction by means of registerWrongReaction function.

Additional information
Header file: ts/register.h
Library: ts

119

CTesK test system support library

See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
TimeMark, registerReaction, registerReactionWithTimelnterval, registerWrongReaction

120

CTesK 2.2 Language Reference

registerReactionWithTimelnterval

registerReactionWithTimeInterval function is intended for registration of reactions, received
from the target system, specifying time interval of its occurrence. Reaction is an interaction initiated
by the target system.

void registerReactionWithTimeInterval (

ChannelID chid,

const char* name,
SpecificationID reactionID,
Object* data,
TimeInterval interval

)7

Parameters

chid
Identifier of an interactions channel, in which the reaction has occurred.
The parameter must be a correct channel identifier.

name
Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionlD.

reactionID

Reaction identifier of the registered interaction.
data

Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.
interval

Time interval of interaction occurrence. The interaction is considered to be occurred
somewhere within the interval, not occupied the whole interval.

Description

registerReactionWithTimeInterval function is intended for registration of reactions, received
from the target system, specifying time interval of its occurrence. Reaction is an interaction initiated
by the target system.

The main properties of interaction are reaction name reactionlD and data data, received during the
interaction. Data type of the received data must coincide with data type of the reaction return value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about receiving incorrect reaction by means of registerWrongReaction function.

Additional information
Header file: ts/register.h
Library: ts

121

CTesK test system support library

See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
Timelnterval, registerReaction, registerReactionWithTimeMark, registerWrongReaction

122

CTesK 2.2 Language Reference

registerWrongReaction

registerWrongReaction function is intended to notify the test system about receiving incorrect
reaction, that cannot be converted to model representation. Reaction is an interaction initiated by the
target system.

void registerWrongReaction(const char* info);

Parameters
info
Description of incorrect reaction, used when analyzing test results.

The parameter can be a NULL pointer.

Description

registerWrongReaction function is intended to notify the test system about receiving incorrect
reaction, that cannot be converted to model representation. Reaction is an interaction initiated by the
target system.

After registering incorrect reaction, the test system terminates analysis of current test action with
negative verdict.

Additional information

Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interactions registrar, registerReaction,
registerReactionWithTimeMark, registerReactionWithTimelnterval,
registerStimulusWithTimelnterval

123

CTesK test system support library

registerStimulusWithTimelnterval

registerStimulusWithTimeInterval function is intended for registering stimulus that was not
registered automatically by the test system. Stimulus is an interaction with the target system
initiated by the test.

void registerStimulusWithTimeInterval (

ChannelID chid,

const char* name,
SpecificationID stimulusID,
TimeInterval interval,

)7

Parameters

chid
Identifier of an interactions channel, in which the stimulus has given.
The parameter must be a correct channel identifier.

name
Name of the stimulus. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the specification function name stimulusID.

stimulusID
Identifier of the specification function registered interaction corresponds to.
interval

Time interval of interaction occurrence. The interaction is considered to be occurred
somewhere within the interval, not occupied the whole interval.

arguments
Additional arguments strictly in the following order:
e List of specification function parameters values before its invocation.

e List of specification function parameters values after its invocation.

e Value returned by the specification function (if data type of result value is not void).

Description

registerStimulusWithTimeInterval function is intended for registering stimulus that was not
registered automatically by the test system. All stimuli, initiated by means of specification functions
calls within the test system process, are registered automatically. Thus the only stimuli to be
registered manually, are those initiated outside the test system process or by other means than
specification function call.

The main properties of interaction are reaction name reactionID and data, passed via additional
arguments.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about incorrect behavior during interaction by means of registerWrongReaction
function within the test system main process.

124

CTesK 2.2 Language Reference

Additional information
Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Interactions registrar, Interaction channels, ChannellD,
Timelnterval, registerWrongReaction

125

CTesK test system support library

Catcher functions registering service

For the convenience of registering deferred reactions, the test system provides catcher functions
registering service. The service is organized as follows. Special catcher functions are registered in
the test system, to be invoked after stabilization period of each test action. Till the stabilization
period the target system must initiate all requested reactions and come to a stable state. Catcher
functions must then gather all information about received reactions and register them in interaction

registrar.
To register catcher functions the following functions are intended:

registerReactionCatcher

unregisterReactionCatcher

unregisterReactionCatchers

126

CTesK 2.2 Language Reference

ReactionCatcherFuncType

ReactionCatcherFuncType data type is used for registration of catcher functions in the test
system.

typedef bool (*ReactionCatcherFuncType) (void¥*) ;

Description

ReactionCatcherFuncType data type is used as data type of catcher functions in the test system.

Additional information
Header file: ts/timemark.h
Library: ts

See also

Deferred reactions registration services, Catcher functions registering service,
registerReactionCatcher, unregisterReactionCatcher, unregisterReactionCatchers

127

CTesK test system support library

registerReactionCatcher

registerReactionCatcher function registers the catcher function in the test system along with its
auxiliary data.

void registerReactionCatcher (
ReactionCatcherFuncType catcher,
voidx* par

)7

Parameters

catcher
Pointer to a catcher function.
The parameter must not be a NULL pointer.
par
Auxiliary data of the function being registered.

The parameter can be a NULL pointer.

Description

registerReactionCatcher function registers the catcher function in the test system along with its
auxiliary data.

When the test system invokes the catcher function, it passes the auxiliary data to it as its parameter.
The sane catcher function can be registered in the test system several times with different data. If
so, the function will be invoked appropriate number of times with different parameter value.
Additional information

Header file: ts/register.h

Library: ts

See also

Deferred reactions registration services, Catcher functions registering service,
ReactionCatcherFuncType, unregisterReactionCatcher, unregisterReactionCatchers

128

CTesK 2.2 Language Reference

unregisterReactionCatcher

unregisterReactionCatcher function removes a record of the specified catcher function with the
specified auxiliary data from the test system.

bool unregisterReactionCatcher (
ReactionCatcherFuncType catcher,
voidx* par

)
Parameters
catcher
Pointer to a catcher function.

The parameter must not be a NULL pointer.
par

Aucxiliary data of the function that was provided during registration.

Return value

The function returns false if the specified function with the specified auxiliary data was not
registered before, and true otherwise.

Description

unregisterReactionCatcher function removes a record of the specified catcher function with the
specified auxiliary data from the test system.

To remove all registration records about the specified catcher function, unregisterReactionCatchers
function is intended.

Additional information

Header file: ts/register.h
Library: ts
See also

Deferred reactions registration services, Catcher functions registering service,
ReactionCatcherFuncType, registerReactionCatcher, unregisterReactionCatchers

129

CTesK test system support library

unregisterReactionCatchers

unregisterReactionCatchers function removes all records of the specified catcher function from
the test system.

bool unregisterReactionCatchers(ReactionCatcherFuncType catcher);

Parameters

catcher
Pointer to a catcher function.

The parameter must not be a NULL pointer.

Return value

The function returns false if the specified function was not registered before, and true otherwise.

Description

unregisterReactionCatchers function removes all records of the specified catcher function from
the test system.

To remove a records about the catcher function with specific auxiliary data,
unregisterReactionCatcher function is intended.

Additional information
Header file: ts/register.h
Library: ts

See also

Deferred reactions registration services, Catcher functions registering service,
ReactionCatcherFuncType, registerReactionCatcher, unregisterReactionCatcher

130

CTesK 2.2 Language Reference

Library of
specification data types

Library of specification data types contains standard functions for dealing with specification data
types (creation, copying, comparing, stringifying) as well as predefined specification data types for
standard data types of C language (char, short, int, long, float, double, void*, crpoku char*), for
complex numbers, for data type with a single value, and for container data types (list, set, map).

Predefined data types are convenient in specifications (for example, for implementation state
modeling) as they provide ready for use, universal, guaranteed faultless functionality.

Standard functions

Standard functions can be used for any specification references. Result of function execution is
dependent on specification reference data type. For example, result of comparing two specification
references of different data types is always negative, and result of comparing two specification
references of the same data type is defined by comparing function, specified in the data type
definition.

Data type of specification reference is defined by a pointer to specification data type descriptor.
Descriptor constant always has the name, consisting of the name of specification data type and
type preﬁx:

const Type type specification data type name;

131

Library of specification data types

Specification reference creation function

Object* create(const Type *type, ...)

The function takes a pointers to specification data type descriptor as its first parameter. Other
parameters are data type initialization parameters and vary for different data types. Initialization
parameters for all predefined data types are described below, and the parameters for used-defined
data types are specified in the data type definition.

The function returns a pointer to the created object.
Integer* ref = create(&type Integer, 28); // ref —

In the above example a reference to library Integer data type (specification analogue of int data
type) is created and initialized.

Specification reference data type function

const Type *type (Object* ref)
The function returns a pointer to the descriptor constant of the specification data type, referenced by
ref pointer.

Integer* ref = create(&type Integer, 28);
if (type(ref) == s&type Integer) // true

Specification reference copying function

void copy(Object* src, Object* dst)

The function copies the contents by src reference to contents by dst reference. References must be
of the same data type, i.e. they must have equal data type descriptors. Otherwise the application will
be terminated in run time with the appropriate error message.

Integer* refl = create(&type Integer, 28); // refl —
Integer* ref2 = create(&type Integer, 47); // ref2 —
copy (refl,ref2); // refl — , ref2 —
In the above example references ref1l and ref2 are referencing to different values of Integer

specification data type after their initialization. After invocation of copy() function, value,
referenced by ref2 pointer, become equal to value, referenced by ref1 pointer.

Object* clone (Object* ref)

The function allocates memory for data type value, referenced by ref pointer, initializes the
allocated memory by a value, equal to value referenced by ref pointer, and returns a pointer to the
allocated and initialized memory.

Integer* refl = create(&type Integer, 28); // refl —
String* ref2 = clone(refl); // ref2 —

Values, referenced by ref1 and ref2 pointers, become equal after invocation of clone () function.

132

CTesK 2.2 Language Reference

Specification reference comparing functions

int compare (Object* left, Object* right)

The function returns zero if the values, referenced by the given references, are equal. Otherwise the
function returns a nonzero value, that can be interpreted differently depending on the data type. For
example, for string library data type, the result has the same meaning as strcmp () function for
char* C data type. If the parameters have incomparable data types (i.e. the references have different
data types, and data type of one reference is not a subtype of another (see Invariants of data types)),
the function returns nonzero value. If one of the references is NULL, and the other is not, the function
returns a nonzero value. If the both references are NuLL, the function returns zero.

if (!compare(refl,ref2)) {/* values are equal */

}

else {/* values are not equal */

}
bool equals (Object* self, Object* ref)

The function returns true if the values, referenced by the given references, are equal, and false
otherwise. If the parameters has different data type, the function returns false. If one of the
references is NULL, and the other is not, the function returns false. If the both references are NULL,
the function returns true.

if (equals(refl,ref2)) {/* values are equal */

}

else {/* values are not equal */

}

Specification reference stringifying function
String* toString(Object* ref)

The function returns a pointer to the value of string data type—specification representation of
character string data type.

Integer* ref = create(&type Integer, 28); // ref —
String* str = toString(ref); // str —
printf ("*ref == '$s'\n", toCharArray String(str));

*ref == '28"

Predefined specification data types

Char

#include <atl/char.h>

133

Library of specification data types

char data type is a specification analogue of char C data type.

Char* create_Char(char d)
Creates a specification reference to the value of char data type.

This function is defines along with the standard create () function:

Char* chl = create(&type Char, 'a');
Char* ch2 = create Char('a');

The above ways of creating a specification reference are equivalent.

char value Char(Char* d)
Returns the char value, contained in this specification data type.

This value can also be accessed by dereferencing of the specification reference:

Char* ch = create Char('a'");
char wval = *ch;

value Char () function provides run time data type checking and it can take a pointer to Object
without previous type cast:

List* 1;
char val;
val = value Char(get_List(1,0)); // Object* get List(List*,int)

If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:
Object* o = get List(1,0));
if (type(o) == &type Char) {
val = value Char (o) ;

}

134

CTesK 2.2 Language Reference

Integer u Ulnteger

#include <atl/integer.h>

Integer and UInteger data types are specification analogues of int and unsigned int C data
types.

Integer¥* create_Integer(int i)
UInteger* create Ulnteger(unsigned int i)

Creates a specification reference to the value of Tnteger or UInteger data types.

This function is defines along with the standard create () function:

Integer* il = create(&type Integer, -28);
Integer* 12 = create Integer(-28);

UInteger* il create (&type Ulnteger, 28);
UlInteger* i2 = create Ulnteger (28);

The above ways of creating a specification reference are equivalent.

int value_Integer(Integer* i)
unsigned int value_ UInteger(Ulnteger* i)

Returns the int or unsigned int value, contained in this Integer or UInteger specification
data type.

These values can also be accessed by dereferencing of the specification reference:

Integer* i = create Integer(-28);
int val = *i;

value Integer () Or value Ulnteger () functions provide run time data type checking and it can
take a pointer to object without previous type cast:

List* 1;

int val;

val = value Integer(get List(1,0)); // Object* get List(List*,int)
If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:

Object* o = get List(1,0));
if (type(o) == &type Integer) {
val = value Integer (o) ;

135

Library of specification data types

Short n UShort

#include <atl/short.h>

short and Ushort data types are specification analogues of short int and unsigned short int
C data types.

Short* create_ Short (short i)
UShort* create_UShort (unsigned short i)

Creates a specification reference to the value of short or Ushort data types.

This function is defines along with the standard create () function:

Short* il = create(&type Short, -28);
Short* i2 = create Short(-28);

UShort* il create (&type UShort, 28);
UShort* 12 = create UShort (28);

The above ways of creating a specification reference are equivalent.

short value_Short (Short* i)
unsigned short value UShort (UShort* i)

Returns the short or unsigned short value, contained in this short or Ushort specification
data type.
These values can also be accessed by dereferencing of the specification reference:

Short* i = create Short (-28);

short val = *i;
value Short() or value UShort () functions provide run time data type checking and it can take
a pointer to object without previous type cast:

List* 1;
short wval;

val = value Short(get List(1,0)); // Object* get List (List*,int)
If the reference can probably have a wrong data type, a direct check by type () standard function

can be useful:

Object* o = get List(1,0));
if (type(o) == &type Short) {
val = value Short (o);

}

136

CTesK 2.2 Language Reference

Long u ULong

#include <atl/long.h>

Long and ULong data types are specification analogues of long int and unsigned long int C
data types.

Long* create_Long(long i)
ULong* create ULong (unsigned long i)

Creates a specification reference to the value of Long or ULong data types.

This function is defines along with the standard create () function:

Long* il = create(&type Long, -28);
Long* 12 = create Long(-28);

ULong* il = create(&type ULong, 28);
ULong* 12 = create ULong(28);

The above ways of creating a specification reference are equivalent.

long value_Long (Long* i)
unsigned long value ULong (ULong* i)

Returns the long or unsigned long value, contained in this Long or ULong specification data
type.

These values can also be accessed by dereferencing of the specification reference:

Long* i = create Long(-28);
long *p = (long*)i;

value Long () Or value ULong () functions provide run time data type checking and it can take a
pointer to object without previous type cast:

List* 1;
long val;
val = value Long(get List(1,0)); // Object* get List(List*,int)

If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:

Object* o = get List(1,0));
if (type(o) == &type Long) {
val = value Long (o) ;

137

Library of specification data types

Float

#include <atl/float.h>

Float data type is a specification analogue of f1oat C data type.

Float* create Float(float d)
Creates a specification reference to the value of Fioat data type.

This function is defines along with the standard create () function:

Float* fl = create(&type Float, 3.14);
Float* f2 = create Float(3.14);

The above ways of creating a specification reference are equivalent.

float value_Float (Float* d)
Returns the f1oat value, contained in this specification data type.

This value can also be accessed by dereferencing of the specification reference:

Float* f = create Float(3.14);
float val = *f;

value Float () function provides run time data type checking and it can take a pointer to Object
without previous type cast:

List* 1;

float val;

val = value Float(get List(1,0)); // Object* get List(List*,int)
If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:

Object* o = get List(1,0));
if (type(o) == &type Float) {
val = value Float(o);

}

138

CTesK 2.2 Language Reference

Double

#include <atl/double.h>

Double data type is a specification analogue of double C data type.

Double* create Double (double d)
Creates a specification reference to the value of bouble data type.

This function is defines along with the standard create () function:

Double* dl = create(&type Double, 3.14);
Double* d2 = create Double(3.14);

The above ways of creating a specification reference are equivalent.

double value Double (Double* d)
Returns the double value, contained in this specification data type.

This value can also be accessed by dereferencing of the specification reference:

Double* d = create Double(3.14);
double *p = (double*)d;

value Double () function provides run time data type checking and it can take a pointer to object
without previous type cast:

List* 1;

double val;

val = value Double(get List(1,0)); // Object* get List(List*,int)
If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:

Object* o = get List(1,0));
if (type(o) == &type Double) {
val = value Double (0);

}

139

Library of specification data types

VoidAst

#include <atl/void ast.h>

voidast data type is a specification analogue of void* C data type.

VoidAst* create VoidAst (void *d)
Creates a specification reference to the value of voidast data type.

This function is defines along with the standard create () function:

VoidAst* v1 = create(&type VoidAst, NULL);
VoidAst* v2 = create VoidAst (NULL);

The above ways of creating a specification reference are equivalent.

void *value VoidAst (VoidAst* d)
Returns the void* value, contained in this specification data type.

This value can also be accessed by dereferencing of the specification reference:

VoidAst* v = create VoidAst (NULL) ;
void *val = *v;

value Voidast () function provides run time data type checking and it can take a pointer to
Object without previous type cast:

List* 1;

void *val;

val = value VoidAst (get_ List(1,0)); // Object* get List(List*,int)
If the reference can probably have a wrong data type, a direct check by type () standard function
can be useful:

Object* o = get List(1,0));
if (type(o) == &type VoidAst) {
val = value VoidAst (o) ;

}

140

CTesK 2.2 Language Reference

Unit
#include <atl/unit.h>
unit data type is a specification data type with the only value.

Two non-NULL specification references of unit data type are always equal.

Unit* create Unit ()
Creates a specification reference to the value of unit data type.

This function is defines along with the standard create () function:

Unit* ul = create(&type Unit);
Unit* u2 create Unit();

The above ways of creating a specification reference are equivalent.

141

Library of specification data types

Complex

#include <atl/complex.h>

Complex data type is intended for representation of complex numbers.

The usual comparing rules are applied to specification references of complex data type:
((re1, imy) = (rey, imy) <> rey =rey, imy = imy).

String representation look like (re + im*i).

Base type of complex data type is the following structure:

struct {
double re;
double im;

}s

There are no special functions to access real and imaginary parts of the complex number, so
dereferencing should be used:

Complex* ¢ = create Complex (1.4, -0.6);
double re = c->re;
double im = c->im;

Complex* create Complex (double re, double im)

Creates a specification reference to the value of complex data type with real part equals to re and
imaginary part equals to im.

This function is defines along with the standard create () function:

Complex* cl = create(&type Complex, 1.4, -0.6);
Complex* c2 = create Complex (1.4, -0.6);

The above ways of creating a specification reference are equivalent.

142

CTesK 2.2 Language Reference

String

#include <atl/string.h>
string data type is intended for representation of character strings.

The way strings are represented in C language, as array of char, cannot be kept within the concept
of allowable data type. Thus, strings can be conveniently represented by this specification data type
everywhere the allowable data type is required.

Specification references to string data type are compared by normal rules, the same way as
stremp function did. Character positions are numbered from O.

Specification strings can be handled like usual C strings, taking into account that the value of the
string should not be changed. To access C string value, toCharArray String() function is used.
This function returns a pointer to character array within the specification data type.

At the same time specification string provides itself a lot of convenient functions. All that functions
can accept only non-NULL String references.

String* create_ String (const char *cstr)

Creates a specification reference to the value of string data type and initialized it by cstr C
string.

This function is defines along with the standard create () function:

String* sl create (&type String, "a string");
String* s2 = create String("a string");

The above ways of creating a specification reference are equivalent.

char charAt String(String* self, int index)
Returns a character in the given index position.

Number of the position must be in the range from 0 to length String(self)-1.

String* s = create String("abracadabra");
printf ("%c\n", charAt String(s,5));

(¢]

String *concat String(String* self, String* str)

Returns concatenation of se1f and str string.

String* sl = create String("abra");
String* s2 = create String("cadabra");
String* s = concat String(sl,s2);

printf ("$s\n", toCharArray String(s));

abracadabra

bool endsWith String(String *self, String *suffix)

Checks whether se1f string ends with suffix string.

143

Library of specification data types

If suffix string is empty, returns true. If length of suffix string is greater than length of self
string, returns false.

String* s = create String("abracadabra");
String* sl = create String("abr");
String* s2 = create String("cadabra");

printf ("1) %d\n2) %d\n ",
endsWith String(s,sl),
endsWith String(s,s2)

) ;

1) O

2) 1

int indexOfChar_ String(String* self, int ch)
Returns the position of first ch character in the string. If the character is not found, returns —1.

For the character with zero code always returns —1.
String* s = create String("abracadabra");
printf ("1) %d\n2) %d\n",

indexOfChar String(s,'b'),
indexOfChar String(s,'z")

int indexOfCharFrom String(String* self, int ch, int fromIndex)

Returns the position of ch character in the string, starting from fromIndex position. If the
character is not found, returns —1.

If fromIndex position is greater than length of self string, i.e.
fromIndex > length String(self), returns —1. If fromIndex < 0, the position is considered to
be 0. For the character with zero code always returns —1.
String* s = create String("abracadabra");
printf ("1) %d\n2) %d\n",
indexOfCharFrom String(s,'b',5),
indexOfCharFrom String(s, 'b',9)

int indexOfString String(String* self, String* str)
Returns the position of str substring within se1f string. If the substring is not found, returns —1.

If the substring is empty, it considered to belong to any string (including empty string) from zero
position.

String* s = create String("abracadabra");
String* sl = create String("abra");
String* s2 = create String("cdbr");
printf ("1) %d\n2) %d\n",
indexOfString String(s,sl),
indexOfString String(s,s2)
);

144

CTesK 2.2 Language Reference

int indexOfStringFrom String(String* self, String* str, int fromIndex)

Returns the position of str substring within self string, starting from fromIndex position. If the
substring is not found, returns —1.

If fromIndex position is greater that length of self string, 1.e.
fromIndex > length String(self), returns —1. If fromIndex < 0, fromIndex poﬁﬁon.is
considered to be 0. If the substring is empty, it considered to belong to any string (including empty
string) from fromIndex position.

String* s = create String("abracadabra");

String* sl = create String("abra");

printf (1) %d\n2) %d\n",
indexOfString String(s,sl,5),
indexOfString String(s,sl, 8)
) i

int lastIndexOfChar_String(String* self, int ch)

Returns the position of first ch character when searching the string backwards. If the character is
not found, returns —1.

For the character with zero code always returns —1.

String* s = create String("abracadabra");
printf ("1) %d\n2) %d\n",
lastIndexOfChar String(s,'b'),
lastIndexOfChar String(s,'z")

int lastIndexOfCharFrom String(String* self, int ch, int fromIndex)

Returns the position of first ch character when searching the string backwards, starting from
fromIndex position. If the character is not found, returns —1.

If fromIndex < 0, returns —1. If fromIndex 1is greater that length of self string, i.e.
fromIndex > length String(self), the position is considered to be length String(self). For
the character with zero code always returns —1.
String* s = create String("abracadabra");
printf ("1) %d\n2) %d\n",
lastIndexOfCharFrom String(s,'b',5),
lastIndexOfCharFrom String(s,'b',0)

int lastIndexOfString String(String* self, String* str)

145

Library of specification data types

Returns the position of str substring when searching the string backwards. If the substring is not
found, returns —1.

If the substring is empty, it considered to belong to any string (including empty string) from
length String(self) position.

String* s = create String("abracadabra");
String* sl = create String("abra");
String* s2 = create String("cdbr");

printf ("1) %d\n2) %d\n",
indexOfString String(s,sl),
indexOfString String(s,s2)
)i

int lastIndexOfStringFrom String(String* self, String* str, int fromIndex)

Returns the position of str substring when searching the string backwards, starting from
fromIndex position. If the substring is not found, returns —1.

If fromIndex < 0, returns —1. If fromIndex is greater than length of self string, i.e.
fromIndex > length String(self), the position is considered to be length String(self). If
the substring is empty, it considered to belong to any string (including empty string) from
fromIndex position.
String* s = create String("abracadabra");
String* sl = create String("abra");
printf ("1) %d\n2) %d\n",
lastIndexOfString String(s,sl, 3),
lastIndexOfString String(s,sl,2)

int length_String(String* self)
Returns length of the string.

String* s = create String("abracadabra");
printf ("$d\n", length String(s));

11

bool regionMatches String(String* self, bool ignoreCase, int toffset,
String* other, int ooffset, int 1len)

bool regionMatchesCase_String(String* self, int toffset,
String* other, int ooffset, int 1len)

Checks whether the substring of self string (1en length, from toffset position) matches the
substring of other string (1en length, ooffset position). regionMatchesCase String function
takes letters case into account, and regionMatches String function has an additional parameter
ignoreCase (case is not considered if true, and considered if false).

Length of substrings must be non-negative (1en > 0). If substrings, defined by the position and
length, are out of the string bounds, the function returns false.

146

CTesK 2.2 Language Reference

String* sl = create String("aBrAcAdabra");

String* s2 = create String("cadabra");

printf ("al) %d\na2) %d\n",
regionMatchesCase String(sl,0,s2,3,4),
regionMatchesCase String(sl,7,s2,3,4)

) ;

printf ("bl) %d\nb2) %d\n",

regionMatches String(sl, false,0,s2,3,4),

regionMatches String(sl, true,0,s2,3,4)

) ;

= O O

String* replace_ String(String* self, char oldChar, char newChar)

Returns a string constructed from self string by changing all occurrences of oldchar character to
newChar character.

The characters must have a non-zero code.
String* s = create String("abracadabra");

String* res = replace String(s,'a',' ');

o)

printf ("$s\n", toCharArray (res));

_br ¢ d br

bool startsWith String(String *self, String *prefix)
Checks whether self string starts with prefix string.

If prefix string is empty, returns true. If length of prefix string is greater than length of self
string, returns false.

String* s = create String("abracadabra");
String* sl = create String("abra");
String* s2 = create String("cadabra"):;

printf (1) %d\n2) %d\n ",
startsWith String(s,sl),
startsWith String(s,s2)

bool startsWithOffset String(String *self, String *prefix, int toffset)
Checks whether se1f string starts with prefix string from offset position.

If the position is negative or is greater than length of sel1f string, returns false. If prefix string
is empty, returns true. If length of prefix string is greater than length of self string, returns
false.

String* s = create String("abracadabra");
String* sl = create String("abra");
printf ("1) %d\n2) %d\n",
startsWithOffset String(s,sl,7),
startsWithOffset String(s,s2,8)
) ;

147

Library of specification data types

1) 1
2) 0

String* substringFrom String(String* self, int beginIndex)

Returns a substring of self string, from beginIndex position till the end of the string.

beginIndex position must be within the string bounds:
0 £ beginIndex < length String(self).

String* s = create String("abracadabra");

String* res = substringFrom String(s,4);

Q

printf ("$s\n",toCharArray String(res));

cadabra

String* substring String(String* self, int beginIndex, int endIndex)

Returns a substring of self string, from beginIndex position to endIndex-1 position (including
the bounds).

beginIndex position must be non-negative and must be not greater than endIndex. endIndex
position must be not greater than length of the string:
0 < beginIndex < endIndex < length String(self). If starting and ending positions are
equal, returns an empty string.

String* s = create String("abracadabra");
String* res = substring String(s,4,7);
printf ("$s\n", toCharArray String(res));

cad

const char* toCharArray String(String* self)
Returns a C string, corresponding to the given specification string.

The function returns a pointer to character array within the specification object, therefore free ()
function cannot be used for the pointer and the pointer cannot be used after destroying the object.

String* s = create String("abracadabra");
printf ("$s\n", toCharArray String(s));

abracadabra

String* toLowerCase_ String(String* self)

Returns a string, constructed from self string by converting it to lower case.

String* s create String("aBrAcAdAbRa");
String* res = toLowerCase String(s);
printf ("$s\n",toCharArray String(res));

abracadabra

String* toUpperCase_ String(String* self)

Returns a string, constructed from self string by converting it to upper case.

String* s create String("aBrAcAdAbRa");
String* res = toLowerCase String(s);
printf ("$s\n",toCharArray String(res));

148

CTesK 2.2 Language Reference

ABRACADABRA

String* trim String(String* self)

Returns a string, constructed from self string by trimming space characters from beginning and
ending of the string.

Space characters are spaces, tabs, and new line characters.

String* s = create String(" \tabracadabra \n");
String* res = trim String(s);
printf ("'$s'\n",toCharArray String(res));

'abracadabra'

String* format String(const char *format, ...)
Returns a specification string, corresponding to output of printf () function, invoked with the
same parameters:

char s[12];

String* str;

sprintf (s, "abra%s", "cadabra") ;
str = create String(s);

String* str = format String("abra%s","cadabra");

The above ways of creating a string are equivalent.

String* valueOfBool String(bool b)

Returns string representation of bool value.

String* sl valueOfBool String(true);
String* s2 = valueOfBool String(false);
printf ("1) %s\n2) %s\n",

toCharArray String(sl),

toCharArray String(s2)

) ;

1) true
2) false

String* valueOfChar_String(char c)

Returns string representation of char value.

String* s = valueOfChar_ String('a');
printf ("$s\n", toCharArray String(s));

a

String* valueOfShort_String(short i)

Returns string representation of short value.

String* s = valueOfShort String (-28);
printf ("$s\n",toCharArray String(s));

-28

149

Library of specification data types

String* valueOfUShort String(unsigned short i)

Returns string representation of unsigned short value.

String* s = valueOfUShort String(47);
printf ("$s\n", toCharArray String(s));

47

String* valueOfInt String(int i)

Returns string representation of int value.

String* s = valueOfInt String(-28);
printf ("$s\n",toCharArray String(s));

-28

String* valueOfUInt_String(unsigned int i)

Returns string representation of unsigned int value.

String* s = valueOfUInt String(47);
printf ("$s\n",toCharArray String(s));

47

String* valueOfLong String(long i)

Returns string representation of 1ong value.

String* s = valueOfLong String(-28);
printf ("$s\n",toCharArray String(s));

-28

String* valueOfULong String(unsigned long i)

Returns string representation of unsigned long value.

String* s = valueOfULong String(47);
printf ("$s\n", toCharArray String(s));

47

String* valueOfFloat_String(float f)

Returns string representation of f1oat value.

String* s = valueOfFloat String(3.14);
printf ("$s\n",toCharArray String(s));

3.140000

String* valueOfDouble String(double d)

Returns string representation of double value.

String* s = valueOfDouble String(3.14);

o)

printf ("$s\n",toCharArray String(s));
3.140000

150

CTesK 2.2 Language Reference

String* valueOfPtr_ String(void *p)

Returns string representation of void* value.
int i;
String* s = valueOfPtr String((void*)é&i);
printf ("$s\n",toCharArray String(s));

0012FF6C

String* valueOfObject String(Object* ref)
Returns string representation of the specification data type value.

Result is the same as for tostring () standard function:

Object* ref;

String* s valueOfObject String(ref);

String* s toString (ref);

String* valueOfBytes_String(const char* p, int 1)

Returns string hexadecimal representation of p byte array of 1 length.

char a[6] = { 0x00, 0x33, 0Ox66, 0x99, 0xCC, OxFF };
String* s = valueOfBytes String(a,6);
printf ("$s\n",toCharArray String(s));

[00 33 66 99 CC FF]

151

Library of specification data types

List
#include <atl/list.h>

List data type is a container data type, implementing an ordered list of items.

Any specification references can be elements of a list. Type of elements can be constrained when
creating a list. Such a list is called #ypified, and all functions, related to the typified list, will check
that object* parameter actual type is equal to data type of list’s elements.

Two list are equal if they have the same length and their elements are equal in pairs. Typification of
lists is not considered at that. Particularly, empty lists are always equal.

FElements of a list are numbered from 0.

List* create_ List(const Type *elem_ type)

Creates a list and returns a specification reference of List data type. If elem type parameter is
NULL, type of elements is not restricted. Otherwise the parameter must a pointer to descriptor
constant of data type of list’s elements:

List* 11 = create List (NULL); // any elements
List* 12 = create List(&type Integer); // only elements of Integer type

This function is defines along with the standard create () function:

List* 11 = create(&type List, NULL);
List* 12 = create List (NULL);

The above ways of creating a specification reference are equivalent.

Type *elemType List(List* self)

Returns a pointer to descriptor constant of specification data type, that constrains data type of the
list’s elements.

If the list is not typified, returns NULL.

List* 1 = create List(&type Integer);
Type *t = elemType List (1) ; // &type Integer

void add List(List* self, int index, Object* ref)
Inserts ref element into the list at index position.

If the list is typified, data type of ref element must coincide with data type of list’s elements.
Number of position must be in the range from 0 to length of the list (including the bounds), i.e.
0 < index < size List (self). If number of position is equal to length of the list, the element is
appended to the end of this list.

List* 1 create List (&type Integer);

addiList(l,O,createiInteger_(Z //

add List(l,0,create Integer (47)) // 28
add List(l,1,create Integer(63)); // 47 28
void append List(List* self, Object* ref)

Appends ref element to the end of the list.

152

CTesK 2.2 Language Reference

If the list is typified, data type of ref element must coincide with data type of list’s elements.

List* 1 = create List(&type Integer);

append List (l,create Integer(28)); // Eﬁ
append List (l,create Integer(47)); // 28
append List(l,create Integer(63)); // 28 47

void clear List(List* self)

Removes all elements from the list.

List* 1 = create List(&type Integer);

append List (l,create Integer(28)); //
append List (l,create Integer(47)); // 28
clear List(l); /7

The same result can be achieved by re-creating the list, but clear List () function is more
effective:

List* 1;

1 = create List(elemType List(1l));

bool contains_List(List* self, Object* ref)
Checks whether the list contains an element, equals to the given.

If the list is typified, data type of ref element must coincide with data type of list’s elements.

List* 1 = create List(&type Integer);

append List (l,create Integer(28)); //
append List (1l,create Integer(47)); // 28
if (contains List(l,create Integer(28))) ... // MCTUHHO

Object* get List(List* self, int index)
Returns a specification reference to the element at index position.

Number of position must be in the rage from 0 to length of the list — 1, ie.
0 < index < size List (self).

List* 1 = create List(&type Integer);

Object* o;

append List (l,create Integer(28)); //
append List (1l,create Integer(47)); // 28
append List (l,create Integer(63)); // 28 47
o = get List(l,1); //

int indexOf List(List* self, Object* ref)
Returns number of position of first element in the list, equals to ref.

If the list is typified, data type of ref element must coincide with data type of list’s elements. If the
list does not contain the element, returns —1.

List* 1 = create List(&type Integer);

append List (l,create Integer(28)); //
append List (l,create Integer(47)); // 28
append List (l,create Integer(28)); // 28 47

int pos = indexOf List(l,create Integer(28)); // 0

153

Library of specification data types

bool isEmpty List(List* self)

Checks whether the list is empty.

bool empty;
List* 1 = create List(&type Integer);

empty = isEmpty List(1l); // true
append List (l,create Integer(28)); //
empty = isEmpty List (1) ; // false

int lastIndexOf List(List* self, Object* ref)
Returns number of position of the last element in the list, equals to ref.

If the list is typified, data type of ref element must coincide with data type of list’s elements. If the
list does not contain the element, returns —1.

List* 1 = create List(&type Integer);

append List (l,create Integer(28)); //
append List (1,create Integer (47)); // 28
append List (l,create Integer(28)); // 28 47

int pos = lastIndexOf List(l,create Integer(28)); // 2

void remove List(List* self, int index)
Removes the element at index position from the list.

Number of position must be in the range from 0 to length of the list, i.e.
0 £ index < size List (self).

List* 1 = create List(&type Integer);

append List (1,create Integer(28)); //
append List(l,create Integer(47)); // 28
append List (l,create Integer(63)); // 28 47
remove List(1l,1); // 28 63

void set List(List* self, int index, Object* ref)
Replaces the element at index position in the list by ref element.

If the list is typified, data type of ref element must coincide with data type of list’s elements.
Number of position must be in the range from 0 to length of the list (including the bounds), i.e.
0 < index < size List (self). If number of position is equal to length of the list, the element is
appended to the end of this list.

List* 1 = create List (&type Integer);

append List (l,create Integer(28)); //
append List (l,create Integer(47)); // 28 [47]
set List(l,1,create Integer(63)); // 28 [63]

int size_List(List* self)
Returns length of the list.

int size;
List* 1 = create List (&type Integer);
size = size List(l); // 0

154

CTesK 2.2 Language Reference

append List(l,create Integer(28)); //
size = size List(1l); // 1

List* subList List(List* self, int fromIndex, int toIndex)
Returns sublist of the given list, containing elements from fromIndex position to toIndex-1

position.

fromIndex position must be not negative and must be not greater than toIndex. toIndex position
must be not greater than length of the list: 0 < fromIndex < toIndex < size List(self). If
fromIndex equals to toIndex, returns an empty list.

List* 1 = create List(&type Integer);

List* 12;

append List (1l,create Integer(28)); //
append List (l,create Integer(47)); // 28
append List(l,create Integer(63)); // 28 47
12 = subList List(l,1,3); // 47 63

void addAll List(List* self, int index, List* other)
Adds to seft list all elements of other list, inserting them from index position.

If se1f list is typified, types of all elements of other list must coincide with type of elements of
self list (other list itself is not required to be typified). Number of position must be in the range
from 0 to length of self list (including the bounds), i.e. 0 < index < size List (self).If number
of position is equal to length of se1f list, elements are appended to the end of this list.

List* 11 = create List(&type Integer);
List* 12 = create List (NULL);

append List (11,create Integer(28)); // 28]

append List (1ll,create Integer(47)); // 28
append List (12,create Integer (63)); // (63

append List (12,create Integer(85)); // 63
addAll List(11,1,12); // 28 63 85 47

void appendAll List(List* self, List* other)
Appends all elements of other list to the end of se1f list.

If se1f list is typified, types of all elements of other list must coincide with type of elements of
self list (other list itself is not required to be typified).

List* 11 = create List (&type Integer);

List* 12 = create List (NULL);

append List (11l,create Integer(28)); //

append List (11,create Integer(47)); // 28
append List (12,create Integer(63)); //

append List (12,create Integer(85)); // 63
appendAll List(11,12); // 28 47 63 85

Set* toSet List(List* self)
Returns a set that consists all elements of the given list.

Returned set has the same typification as the list: if elements of the list was constrained by a data
type, elements of the set will be constrained by the same type.

155

Library of specification data types

List* 1 = create List(&type Integer);

Set* s;

Type *t;

append List (l,create Integer(28)); // Eﬁ

append List (1l,create Integer(47)); // 28

append List (l,create Integer(28)); // 28 47

s = toSet List(l); // 28 47

t = elemType Set(s); // &type Integer

156

CTesK 2.2 Language Reference

Set

#include <atl/set.h>
set data type is a container type, implementing a set of elements.

Any specification references can be elements of a set. Type of elements can be constrained when
creating a set. Such a set is called #ypified, and all functions, related to the typified set, will check
that object* parameter actual type is equal to data type of set’s elements.

Two sets are equal if they have the same elements. Typification of sets is not considered at that.
Particularly, empty sets are always equal.

Set* create_Set(const Type* elem type)

Creates a set and returns a specification reference of set data type. If elem type parameter is
NULL, type of elements is not restricted. Otherwise the parameter must a pointer to descriptor
constant of data type of set’s elements:

Set* sl create Set (NULL); // any elements
Set* s2 = create Set(&type Integer); // only elements of Integer type

This function is defines along with the standard create () function:

Set* sl = create(&type Set, NULL);
Set* s2 = create Set (NULL) ;

The above ways of creating a specification reference are equivalent.

Type *elemType_Set(Set* self)

Returns a pointer to descriptor constant of specification data type, that constrains data type of the
set’s elements.

If the set is not typified, returns NULL.

Set* s = create Set(&type Integer);
Type *t = elemType Set(s); // &type Integer

bool add Set(Set* self, Object* ref)
Adds ref element to the set.

If the set is typified, data type of ref element must coincide with data type of set’s elements.

Set* s = create Set (&type Integer);

add Set (s,create Integer(28)); //
add_Set (1,create Integer (47)); // 28 [47]
add Set (1,create Integer(28)); // 28 [47]

void remove_ Set(Set* self, Object* ref)
Removes the element from the set.

If the set is typified, data type of ref element must coincide with data type of set’s elements.

Set* s = create Set (&type Integer);

add Set (s,create Integer(28)); //
add Set (s,create Integer(47)); // 28
remove Set (s,create Integer(28)); // 47

157

Library of specification data types

void clear Set(Set* self)

Removes all elements from the set.

Set* s = create Set(&type Integer);

add Set (s,create Integer(28)); //
add_Set (s,create Integer (47)); // 28
clear Set(s); //

The same result can be achieved by re-creating the set, but clear set() function is more
effective:

Set* s;

s = create Set (elemType Set(s));

bool contains Set(Set* self, Object* ref)
Checks whether the set contains an element, equals to the given.

If the set is typified, data type of ref element must coincide with data type of set’s elements.

Set* s = create Set (&type Integer);

add_Set (s,create Integer (28)); // 28]

add Set (s,create Integer(47)); // 28
if (contains_ Set (s,create Integer(28))) ... // MUCTHMHHO

bool isEmpty Set(Set* self)

Checks whether the set is empty.

bool empty;

Set* s = create Set(&type Integer);

empty = isEmpty Set(s); // true
add_Set (s,create Integer (28)); // 28
empty = isEmpty Set(s); // false

int size_Set(Set* self)

Returns number of elements in the set.

int size;
Set* s = create Set (&type Integer);

size = size Set(s); // 0
add_Set (s,create Integer(28)); //
size = size Set(s); /71

Object* get Set(Set* self, int index)
Returns a specification reference to the element with index number.

This function is intended for enumeration of set’s elements. Since a set is not ordered, elements are
numerated in a random order. Number of position must be in the range from 0 to size of the set — 1,
i.e. 0 € index < size Set (self).

Set* sl = create Set(&type Integer);

Set* s2 = create_Set(&type_Integer);

int i; - B

add Set (sl,create Integer(28)); //
add Set (sl,create Integer (47)); // 28

158

CTesK 2.2 Language Reference

add Set (sl,create Integer (63)); // 28 47
for (i=0; i<size Set(sl); i++)

add_Set (s2,get Set(sl,i));
if (equals(sl,s2)) ... // true

bool containsAll Set(Set* self, Set* set)
Checks whether set is a subset of self set.

In other words, checks whether all elements of set belong to se1f set.

Set* sl = create Set (&type Integer);
Set* s2 = create Set (NULL);

add Set (sl,create Integer(28)); //
add Set (sl,create Integer (47)); // 28
add Set (s2,create Integer(28)); //
add_Set (s2,create String("a")); // 28 @
add Set (s2,create Integer (47)); // 28 a
if (containsAll Set(sl,s2)) . // JIOXHO

)

if (containsAll Set(s2,sl) // MCTMHHO

bool addAll_Set(Set* self, Set* set)

Unions self set with set. Returns true if self set was changed during the operation, and false
otherwise.

In other words, adds all elements of set to self set. If self set is typified, types of all elements of
set must coincide with type of elements of se1f set (set itself is not required to be typified).

Set* sl = create Set(&type Integer);

Set* s2 = createiSet(NULL)?

add Set (sl,create Integer (28)); //
add Set (sl,create Integer(47)); // 28
add Set (s2,create Integer(28)); //
(47));
(63));

—~ o~~~

add Set (s2,create Integer ; // 28
add Set (s2,create Integer ; // 28 47
if (addAll Set(sl,s2)) ... // wmcTuHHO; 28 47 63

bool retainAll Set(Set* self, Set* set)

Intersects self set with set. Returns true if self set was changed during the operation, and
false otherwise.

In other words, retains in se1f set only elements that belong to set.

Set* sl = create Set (&type Integer);
Set* s2 = create Set (NULL) ;.
add Set (sl,create Integer(28)); //
add Set (sl,create Integer(47)); // 28
add Set (sl,create Integer(63)); // 28 47
(28));
(47));

—~ o~~~

add_Set (s2,create Integer ; //
add Set (s2,create Integer F // 28
if (retainAll Set(sl,s2)) ... // ucrtuHHO; 28 47

bool removeAll Set(Set* self, Set* set)

Subtracts set from self set. Returns true if self set was changed during the operation, and
false otherwise.

159

Library of specification data types

In other words, retains in se1f set only elements that does not belong to set.

Set* sl = create Set (&type Integer);
Set* s2 = create Set (NULL);

add Set (sl,create Integer(28)); // EE

add Set (sl,create Integer(47)); // 28

add Set (sl,create Integer(63)); // 28 47
add Set (s2,create Integer (28)); // 28

add Set (s2,create Integer(47)); // 28

if (removeAll Set(sl,s2)) ... // wucTuHHO; 63

List* toList_Set(Set* self)
Returns a /ist containing all elements of the given set.

Order of elements in the list is not defined. Returned list has the same typification as the set: if
elements of the set was constrained by a data type, elements of the list will be constrained by the
same type.

Set* s = create Set(&type Integer);

List* 1;

Type *t;

add _Set (s,create Integer(28)); //

add Set (s,create Integer(47)); // 28

1 = tolList Set(s); // 28 47 (mym 47 28)
t = elemType Set(l); // &type Integer

160

CTesK 2.2 Language Reference

Map

#include <atl/map.h>

Map data type is a container type, implementing a mapping of elements from range of definition to
range of values. An element from the range of definition is called a key, and corresponding element
from the range of values is called a value. One key has exactly one corresponding value.

Any specification references can be elements of a map. Type of elements can be constrained when
creating a map, separately for elements of range of definition and for elements of range of values.
Such a map is called #ypified, and all functions, related to the typified map, will check that actual
parameter type is same as the type of map's elements of the appropriate range.

Two maps are equal if they have the same range of keys, and values corresponding to the same keys
from these maps are equal. Particularly, empty maps are always equal.

Map* create Map(const Type *key type, const Type *val_ type)

Creates a map and returns a specification reference of Map data type. If key type parameter is
NULL, type of elements from range of definition is not restricted. Otherwise the parameter must a
pointer to descriptor constant of data type of map’s keys. In a similar manner, if val type
parameter is NULL, type of elements from range of values is not restricted. Otherwise the parameter
must a pointer to descriptor constant of data type of map’s values:

Map* ml = create Map (NULL, NULL); // any elements

Map* m2 = create Map (&type Integer, NULL); // keys of Integer type only
// map from Integer to String

Map* m3 = create Map (&type Integer, &type String);

This function is defines along with the standard create () function:

Map* ml = create(&type Set, NULL, NULL);
Map* m2 = create Map (NULL, NULL);

The above ways of creating a specification reference are equivalent.

Type *keyType Map(Map* self)

Returns a pointer to descriptor constant of specification data type, that constrains data type of the
map’s keys.

If the range of definition is not typified, returns NULL.

Map* m = create Map(&type Integer, &type String);
Type *t = keyType Map (m); // &type Integer

Type *valueType Map(Map* self)

Returns a pointer to descriptor constant of specification data type, that constrains data type of the
map’s values.

If the range of values is not typified, returns NULL.

Map* m = create Map(&type Integer, &type String);
Type *t = valueType Map (m); // &type String

void clear Map(Map* self)

161

Library of specification data types

Removes all elements from the map.

Map* m = create Map(&type Integer, &type String);

put Map (m,create Integer (28),create String("a"));

put Map (m,create Integer(47),create String("b"™)); // 28 - "a",
clear Map (m); //

The same result can be achieved by re-creating the map, but clear Map() function is more
effective:

Map* m;

m = create Map (keyType Map (m), valueType Map (m));

bool containsKey Map(Map* self, Object* key)
Checks whether the map contains a key, equals to the given.

If the range of definition is typified, data type of key element must coincide with data type of
map’s keys.

Map* m = create Map(&type Integer, &type String);

put Map (m,create Integer(28),create String("a")); //

put Map (m,create Integer (47),create String("b")); // 28 - "a",
if (containsKey Map (m,create Integer(28))) ... // WMCTWMHHO

bool containsValue Map(Map* self, Object* value)
Checks whether the map contains a value, equals to the given.

If the range of values is typified, data type of value element must coincide with data type of map’s
values.

Map* m = create Map(&type Integer, &type String);

put Map (m,create Integer(28),create String("a")); //

put Map (m,create Integer (47),create String("b")); // 28 - "a",
if (containsValue Map (m,create String("b"))) ... // mcTuHHO

Object* get Map(Map* self, Object* key)
Returns a specification reference to the value, corresponding to the given key.

If the range of definition is typified, data type of key element must coincide with data type of
map’s keys. If the map does not contain the given key, returns NULL.

Map* m = create Map(&type Integer, &type String);
Object* wval;

put Map (m,create Integer (28),create String("a")); //
put Map (m,create Integer(47),create String("b")); // 28 - "a",
val = get Map(m,create Integer(28)); // "a"

Object* getKey Map(Map* self, Object* value)
Returns a specification reference to a key, the given value corresponds to.

If the range of definition is typified, data type of key element must coincide with data type of
map’s keys. If the map does not contain any keys, the given value corresponds to, returns NULL.
Otherwise returns one of the appropriate keys.
Map* m = create Map(&type Integer, &type String);
Object* key;
162

CTesK 2.2 Language Reference

Object* val;
put Map (m,create Integer(28),create String("a")); //

put Map (m,create Integer(47),create String("a")); // 28 - "a", |47 - "a"
val = create String("a");

key = getKey Map (m,val); // 28 or 47

if (equals(get Map (m,key), val)) ... // true

bool isEmpty Map(Map* self)
Checks whether the map is empty.

Returns true if the map does not contain any “key—value” pair, otherwise returns false.

bool empty;

Map* m = create Map(&type Integer, &type String);

empty = isEmpty Map (m) ; // true

put Map (m,create Integer(28),create String("a")); //
empty = isEmpty Map (m); // false

Object* put Map(Map* self, Object* key, Object* value)
Adds the “key—value” pair to the map.

If the range of definition is typified, data type of key element must coincide with data type of
map’s keys. If the range of values is typified, data type of value element must coincide with data
type of map’s values.

If the map does not contain key, the key and the corresponding value are added to the map; the
function returns NuLL. If the map already contains key, the function returns the old corresponding
value, and the old value is changed to the new one (value).

Map* m = create Map(&type Integer, &type String);
put Map (m,create Integer (28),create String("a"));

// returns NULL;

a

put Map (m,create Integer(47),create String("b"));

// returns NULL; 28 - "a", |47 - "b"

put Map (m,create Integer (28),create String("c"));
4

// Feturns "a”; b7

void putAll Map(Map* self, Map* t)
Adds all “key—value” pairs from t map to self map.

If the range of definition is typified, data type of all keys from t+ map must coincide with data type
of map’s keys. In a same manner, if the range of values is typified, data type of all values from t
map must coincide with data type of map’s values. (Range of definition and range of values of
map are not required to be typified.)

If se1f map already contains a key from t map, the corresponding value is changed to the new.

Map* ml = create Map (&type Integer, &type String);
Map* m2 = create Map (NULL, NULL);

put Map (ml,create Integer (28),create String("a")); //

put Map (ml,create Integer(63),create String("b")); // 28 - "a", |63 - "b"
put Map (m2,create Integer (28),create String("c")); //

put Map (m2,create Integer (47),create String("d")); // 28 - "c",
putAll Map (ml,m2); // ml: 28 — "c", 47 - "d", 63 - "b"

Object* remove Map (Map* self, Object* key)
163

Library of specification data types

Removes the pair with the key key from the map self. Returns the value of the removed pair or
NULL if there is no the pair with the key key in the map self.

Map* m = create Map(&type Integer, &type String);
put Map (m,create Integer (28),create String("a"));
// returns NULL; |28 - "a"

remove Map (m, create Integer (28));

// returns "a"

remove Map (m,create Integer (28));

// returns NULL; []

void clear Map (Map* self)

Removes all pairs from the map self.

Map* m = create Map(&type Integer, &type String);
put Map (m,create Integer (28),create String("a")):;

// returns NULL;

put Map (m,create Integer (47),create String("b"));
// returns NULL; 28 - "a", |47 - "b"
clear Map (m);

// returns void; [|

int size Map(Map* self)
Returns size of the map.

Size of the map is the number of “key—value” pairs, contained in the map.

int size;
Map* m = create Map (&type Integer, &type String);

size = size Map (m); // 0
put Map (m,create Integer(28),create String("a")); //
size = size Map(m); // 1

Object* key Map(Map* self, int index)
Returns the key of the map at index position.

This function is intended for enumeration of map’s keys. Since a set is not ordered, elements are
numerated in a random order. Number of position must be in the range from 0 to size of the map —
I,i.e.0 < index < size Map (self).

Map* ml = create Map (&type Integer, &type String);
Map* m2 = create Map (&type Integer, &type String);

int i;

put Map (ml,create Integer (28),create String("a"));

put Map (ml,create Integer (47),create String("b")); // 28 - "a", |47 - "b"
for (i=0; i<size Map(ml); i++) {

Object* key = key Map(ml,i);
Object* val = get Map(ml, key);
put Map (m2, key,val);
}
if (equals(ml,m2)) ... // true

164

CTesK 2.2 Language Reference

SeC grammatics

translation unit ::= (external declaration)+ ;
external declaration ::= function definition
| declaration

| se invariant definition

function definition ::= declaration specifiers
declarator
(declaration)*
compound statement

se invariant definition ::= "invariant" " (" <ID> ")" compound statement
| "invariant" " (" parameter declaration ")"
compound statement

/*
* A.2.2 Declarations
*/
declaration ::= declaration specifiers (init declarator ("," init declarator
xRyt a a B
/*
* Modification of standard syntax:
* GCC declaration specifiers have been added.
*/
declaration specifiers ::= (storage class specifier

| type specifier

| type qualifier

| function specifier

| gcc _declaration specifier
| se declaration specifier

165

SeC grammatics

msvs_declspec
se storage class specifier

init declarator ::= declarator ("=" initializer)? ;
/*
* Modification of standard syntax:
* 1. MSVS declspec specifier has been added.
* 2. se storage class specifier has been added.
*/
storage class specifier ::= "typedef"
| "extern"
| "static"
| Hauto"
| "register"
|
|

se storage class specifier ::= "stable" ;

/*
* Modification of standard syntax:
* Sized integer types (from MSVS) have been added.
*/
type specifier ::= "void"
I "char"
| "short"
| "int"
| "long"
| "float"
| "double"
| "signed"
| "unsigned"
| " Bool"
| " Complex"
| " Imaginary"
| struct or union specifier
| enum specifier
| typedef name
| msvs builtin type

/*
* Modification of standard syntax:
* 1. GCC attributes have been added.
* 2. GCC allows empty list of struct declarations.
*/
struct or union specifier ::= struct or union
(gcc_attribute)*
(<ID>)?
"{"
(struct declaration)*
"}"
| struct or union
(gcc attribute)*
<ID>
struct or union ::= "struct" | "union" ;

166

CTesK 2.2 Language Reference

/*
* Modification of standard syntax:
* MSVS supports struct declarations without declarators.
*/
struct declaration ::= (specifier qualifier)+
(struct declarator ("," struct declarator)*)?
/*
* Modification of standard syntax:
* GCC declaration specifier has been added.
*/
specifier qualifier ::= type specifier
| type qualifier
| gcc declaration specifier
struct declarator ::= declarator
| (declarator)? ":" constant expr
/*

* Modification of standard syntax:
* 1. MSVS supports a comma at the end of enumerators list.
* 2. GCC attributes have been added.

*/
enum specifier ::= "enum"
(gcc_attribute)*
(<ID>)2
" { "
enumerator
("," enumerator)*
(" ") i)
, :
"w } "w
I "enum"
(gcc_attribute)*
<ID>
;
enumerator ::= <ID> ("=" constant expr)? ;
type qualifier ::= "const" | "restrict" | "volatile" ;
function specifier ::= "inline" ;
se declaration specifier ::= "invariant"
| "specification"
| "reaction"
| "mediator" <ID> "for"
| "iterator"
| "scenario"
;
/*

* Modification of standard syntax:

* 1. GCC attributes optional list has been added.

* 2. MSVS attributes optional lists have been added.

*/
declarator ::= (pointer)? (msvs_attribute)* direct declarator (
gcc_attribute)* ;

167

SeC grammatics

direct declarator ::=

/*

<ID>

"(" declarator ")"

direct declarator "[" (assignment expr)? "]"
direct declarator "[" "*" "]"

direct declarator
p;rameteritypeilist
()se_access_description) *
direct declarator

((<ID> (", <ID>)*)?

") n

(se_access_description)*

* Modification of standard syntax:
* 1. GCC attributes have been added.

* 2. MSVS attributes
*/

pointer ::= ((msvs_att

optional lists have been added.

ribute)* "*" (pointer qualifier)*)+ ;

pointer qualifier ::= type qualifier | gcc attribute ;

parameter type list ::=

parameter declaration

se access_description

se access_specifier ::=

se _access ::= (se_acces
se access_alias ::= <ID>
type name ::= (specifie
/*

* Modification of stand
* MSVS attributes opt
*/

abstract declarator ::=

direct abstract declarat

’

parameter declaration

("," parameter declaration)*
("’" "...")?

declaration specifiers declarator

| declaration specifiers (abstract declarator)?
= se_access_specifier se access ("," se access)*
"reads" | "writes" | "updates" ;

s_alias)? assignment expr ;

w_mn .
’

r qualifier)+ (abstract declarator)? ;

ard syntax:
ional lists have been added.

pointer (msvs_attribute)
| (pointer)? (msvs_attribute)
or

*
*

168

’

CTesK 2.2 Language Reference

direct abstract declarator ::= "(" abstract declarator ")"
| (direct abstract declarator)°?
" ["w
(assignment expr)°?
"] " -
| (direct abstract declarator)2 "[" "*" "]"
| (direct abstract declarator)-?

" ("

(parameter type list)?

") "w

typedef name ::= <ID> ;

/*

* Modification of standard syntax:

* initializer list is optional for specification typedef SEC construction.

*/
initializer ::= assignment expr

| "{" (initializer list)2 (",")2 "}"
initializer list ::= (designation)?
initializer
("," (designation)? initializer)*

designation ::= (designator)+ "=" ;
designator ::= "[" constant expr "]" "." <ID> ;

/*

* A.2.3 Statements

*/

/*

* Modification of standard syntax:

* MSVS inline assembler statements have been added.

*/
statement ::= labeled statement

| compound statement

| expression statement

| selection statement

| iteration statement

| jump_ statement

| msvs asm statement

| se iteration statement
| se block statement

labeled statement ::= <ID> ":" statement
| "case" constant expr ":" statement
| "default" ":" statement

compound statement ::= "{" (block item)* "}" ;

block item ::= declaration | statement ;

expression_ statement ::= (expression)? ";" ;

169

SeC grammatics

selection statement = "if"
" ("
expression
") "
statement
("else" statement)°?
| "switch" " (" expression ")" statement
iteration statement = "while"™ " (" expression ")" statement
| "do" statement "while" " (" expression ")" ";"
| "for"
" ("
(declaration | (expression)2 ";")

(expression)?

mw.mn
’

(expression)?

H) n

statement

7
jump statement ::= "goto" <ID> ";"

| "continue™ ";"

I "break" ";"

| "return" (se return expression)2 ";"

’
se return expression ::= expression | "{" expression "}"
se iteration statement ::= "iterate"
" ("
declaration

(expression)?

weemn
4

(expression)?

mw.nmn
’

(expression)?

H) "

statement

se block statement se pre block statement
| se coverage block statement
| se post block statement
| se call block statement
|

se state block statement

se pre block statement ::= "pre" compound statement ;

se coverage block statement ::= ("default")? "coverage" <ID>
compound statement ;

se post block statement "post" compound statement ;
se call block statement ::= "call" compound statement ;

se state block statement ::= "state" compound statement ;

170

CTesK 2.2 Language Reference

/*
* A.2.2 Expressions
*/
constant = <INTEGER CONSTANT>

| <FLOATING CONSTANT>
| <ENUMERATION CONSTANT>
| <CHARACTER CONSTANT>

"w ("

expression

primary_expr = <ID> | constant | <STRING LITERAL> |
se primary expr ;
se primary expr = "invariant"

| "pre" (<ID>)?

| "coverage" (<ID>)?

| "scenario" <ID>
postfix expr = primary expr

| postfix expr "[" expression "]"

| postfix expr

n ("

(assignment expr
") "w

("," assignment expr)*)?

| postfix expr "." <ID>

| postfix expr "->" <ID>

| postfix expr "++"

| postfix expr "--"

| "(" type name ")" "{" initializer list (",")2 "}"

/*
* Modification of standard syntax:
* GCC extension specifier has been added.
*/
unary_expr postfix expr
| "++" unary expr
| unary expr
| unary operator cast expr
| "sizeof" unary expr
|
|

" n

"SiZeOf" " (" type_name ") "

gcc_extension specifier cast

unary operator P— "&" I wskn I "+" I w_mnw nw_.mn
cast expr = unary expr
| "(" type name ")" cast expr

4

multiplicative expr cast expr

| multiplicative expr

additive expr multiplicative expr

| additive expr ("+"

I n_mn

expr

I "!" ‘

"@" ,.

(mweskn ’ "/" ‘ "%")

cast expr

) multiplicative expr

shift expr

additive expr

shift expr ("<<" |

">>") additive expr

171

SeC grammatics

relational expr ::= shift expr
| relational expr ("<" | ">" | "<=" | ">=") shift expr
equality expr ::= relational expr
| equality expr ("==" "!=") relational expr
AND expr ::= equality expr

| AND expr "&" equality expr

exclusive OR expr ::= AND expr
| exclusive OR expr """ AND expr

inclusive OR expr ::= exclusive OR _expr
| inclusive OR expr "|" exclusive OR expr
logical AND expr ::= inclusive OR expr

| logical AND expr "&&" inclusive OR expr

logical OR expr ::= logical AND expr
| logical OR expr "||" logical AND expr
se logical impl expr ::= logical OR expr

| se logical impl expr "=>" logical OR_expr

/*

* Modification of standard syntax:

* The else branch of conditional expr makes optional for conditional
access_descs.

*/
conditional expr ::= se logical impl expr

w.mn

| se logical impl expr "?" expression (
conditional expr)?

’

assignment expr conditional expr

| unary expr assignment operator assignment expr

n_mn

assignment operator

| ="
| /=

| ng—mn

I ny_mn

| w__mn

| "<<="
| ">>="
| ne="

|

|

nA_N

" |:u

"w "w

expression ::= assignment expr ("," assignment expr)* ;

constant expr ::= conditional expr ;

172

CTesK 2.2 Language Reference

/*
* Microsoft Extensions
*/
msvs_attribute ::= " asm" | " fastcall" | " Dbased" | " inline" | " _ cdecl" |
" stdcall" ;
msvs builtin type ::= " int8"
| " intle"
[" int32"
[" inte64"
msvs_declspec ::= " declspec" " (" (msvs extended decl modifier)* ")" ;
msvs_extended decl modifier ::= "thread" | "naked" | "dllimport" | "dllexport" |
"noreturn"

msvs_asm_statement " asm" msvs_asm directive
I " a Sm "
" { "

(msvs asm directive)+

H}"

msvs_asm directive ::= (msvs_asm label def)? msvs_asm segment directive
| msvs asm label def

msvs asm label def = <ID> ":"
- - - I <ID> w.nmn mwm.mn
| " @ " " @ " m.n
;

/*

* msvs_asm_segment directive ::= msvs_asm_instruction

* | msvs asm data directive

* | msvs asm control directive

* | msvs asm startup directive

* | msvs _asm exit directive

* | msvs _asm offset directive

* | msvs asm label directive

* | msvs asm proc directive

* (msvs_asm local directive)~*

* (msvs_asm directive)~*

* msvs_asm_endp directive

* | msvs asm invoke directive

* | msvs asm general directive

* ;

*

* The full MASM instruction set is not supported.

*/
msvs_asm_ segment directive ::= msvs_asm instruction ;
msvs_asm instruction ::= (msvs_asm instr prefix)?

msvs_asm mnemonic
(msvs _asm expr ("," msvs asm expr)*)°?
;
msvs_asm _instr prefix ::= "REP" | "REPE" | "REPZ" | "REPNE" | "REPNZ" | "LOCK" ;
msvs_asm mnemonic ::= <ID> | "AND" | "MOD" | "NOT" | "OR" | "SEG" | "SHL" |
" SHRF | FXOR" .
4

173

SeC grammatics

~

% b X X X X % o

MsSVsS_asm_expr

/

mSvS_asm expr

msvs_asm expr0l

msvs_asm expr02

msvs_asm expr03

msvs_asm_expr04

msvs_asm_expr05

msvs_asm_expr06

msvs_asm expr07

msvs_asm expr08

"SHORT"
".TYPE"
"OPATTR"

msvs_asm _expr0l

msvs_asm_expr0l ;

msvs_asm expr01
msvs_asm_expr01l
msvs_asm_expr02

msvs_asm expr02
msvs_asm_ expr03

" ORH
1] XOR"

"AND"

"NOT" msvs asm expr04

msvs_asm expr04

msvs_asm_expr04
msvs_asm expr04
msvs_asm expr04
msvs_asm_expr04
msvs_asm_expr04
msvs_asm_expr04
msvs_asm expr05

msvs_asm_expr05
msvs_asm_expr05
msvs_asm expr06

msvs_asm_expr06
msvs_asm_expr06
msvs_asm expr06
msvs_asm expr06
msvs_asm_expr06
msvs_asm_expr07

" EQ"
"NE"
wpTw
"LE"
"w GT "w
" GE "

"+"

"w "w

msvs_asm expr05
msvs_asm_expr0l
msvs_asm_expr0l

The full MASM instruction set is not supported.

msvs_asm expr02
msvs_asm expr02

msvs_asm expr03

msvs_asm_expr05
msvs_asm expr05
msvs_asm expr05
msvs_asm_expr05
msvs_asm_expr05
msvs_asm_expr05

msvs_asm_expr06

-" msvs_asm expr06

Wk
n/n

"MOD"
" SHR"
" SHL"

"+" msvs asm expr08
"-" msvs_ asm expr08

msvs_asm_expr08

msvs_asm_expr07
msvs_asm_expr07
msvs_asm expr07
msvs_asm expr07
msvs_asm _expr07

"HIGH"
"LOW"
"HIGHWORD"
" LOWWORD"
msvs_asm e

msvs_asm_ expr09
msvs_asm _expr09
msvs_asm_expr09
msvs_asm_expr09
xpr09

174

CTesK 2.2 Language Reference

msvs_asm_ expr09

msvs_asm_exprl0

msvs_asm exprll

ok X Xk ko o oF oF F X X X % ok o b X X X X % %

/

msvs_asm exprll

msvs_asm type ::=

msvs_asm distance

msvs_asm nearfar

<ID>

"OFFSET" msvs_asm_exprl0
"SEG" msvs_asm exprl0
"LROFFSET" msvs asm exprl0
"TYPE" msvs_asm_ exprl0
"THIS" msvs_asm_exprl0
msvs_asm _expr09 "PTR" msvs asm exprl0
msvs_asm expr09 ":" msvs_asm exprl0

msvs_asm exprl0

msvs_asm _exprl0 "." msvs asm exprll
msvs_asm exprl0 "[" msvs asm expr "]"
msvs_asm exprll

"(" msvs _asm expr ")"
"[" msvs asm expr "]"
"WIDTH" <ID>
"MASK" <ID>

"SIZE" msvs_asm size arg
"SIZEOF" msvs asm size arg
"LENGTH" <ID>

"LENGTHOF" <ID>

msvs_asm record const
msvs_asm_string

msvs asm constant

msvs asm type

<ID>

"$"

msvs_asm_segment register
msvs asm register

"ST"

"ST" " (" msvs asm expr ")"

The full MASM instruction set is not supported.

"(" msvs _asm expr ")"

"[" msvs_asm expr "]"
msvs_asm_constant
msvs_asm_ type

<ID>

Hsll

msvs_asm_segment register
msvs_asm register

msvs_asm distance
msvs_asm data type

msvs_asm nearfar
"NEAR1o6G"
"NEAR32"
"FAR1G"
"FAR32"

"NEAR" I " FAR"

175

SeC grammatics

msvs_asm data type

msvs_asm_segment register ::=

msvs_asm register

msvs_asm special register ::=

msvs_asm gp register ::=

"EDX"

"ESI"

msvs_asm byte register ::=

;
msvs_asm_constant
/%

* GCC Extensions

*/

gcc _declaration specifier ::=

gcc_attribute ::=

" attribute

1= "BYTE"
| "SBYTE"
| HWORDH
| "SWORD"
| "DWORD"
| "SDWORD"
| "EFWORD"
| "QWORD"
| "TBYTE"
| "REAL4"
| "REAL8"
| "REAL1O"
nogn I "pg" I "Epg" ’ n"Epgn ‘ n"eg" ‘ nggn ;
RS msvs_asm special register
| msvs asm gp register
| msvs asm byte register
" CRO " I " CRZ " I n CR3 n
| "w DRO " I " DRl " I Al DR2 Al ‘ " DR3 Al ‘ " DR6 Al ‘
I "TR3 " I "TR4 "w I "TR5 "w ‘ VITR6'I ‘ VITR7 n
"AX " I " EAX " I "w BX " I n EBX n ‘ n CX n ‘ n ECX n ‘
I "BP" I "EBP" I VVSP" I "ESP" ‘ VIDI'I ‘ VIEDI'I ‘
"AL" I "AH" I "BL" I VVBH" ‘ VVCL" ‘ VICH'I ‘ VIDL'I

::= <INTEGER CONSTANT> ;

gcc_attribute
| gcc _extension specifier

"om(" " (" gcc_attribute parameter

(", n

gcc_attribute parameter)* ")" ")" ;

gcc_attribute parameter ::=

assignment expr)*

gcc_any word

gce_extension_specifier ::=

(gcc_any word)?

| gcc_any word " ("

(assignment expr (","

)? ")"

’

<ID>
storage class specifier
type specifier

type qualifier

function specifier

" "

__extension_ " ;

176

n"px"

"SI"

" DR7 "

"DH"

	Contents
	Alphabetical Index
	Introduction
	General information about SeC
	Specifications
	Specification types
	Invariants of types
	Invariants of variables
	Specification functions
	Deferred reactions
	Access constraints
	Aliases
	Preconditions
	Coverage criteria
	Postconditions
	Preexpressions

	Mediators
	Mediator functions
	Call blocks
	State blocks

	Test scenarios
	Test scenario
	Scenario functions
	Iteration statements
	State variables

	CTesK test system support library
	Base services of the test system
	System functions
	setBadVerdict
	assertion

	Time model
	TSTimeModel
	setTSTimeModel
	getTSTimeModel
	LinearTimeMark
	TimeFrameOfReferenceID
	TimeMark
	TimeInterval
	systemTimeFrameOfReferenceID
	minTimeMark
	maxTimeMark
	getTimeFrameOfReferenceID
	setSystemTimeFrameOfReferenceName
	createTimeMark
	createDistributedTimeMark
	createTimeInterval
	GetCurrentTimeMarkFuncType
	getCurrentTimeMark
	setDefaultCurrentTimeMarkFunction

	Standard test engines
	dfsm
	ndfsm
	Types and parameters of test engines
	PtrInit
	init
	PtrFinish
	finish
	PtrGetState
	getState
	actions
	PtrSaveModelState
	saveModelState
	PtrRestoreModelState
	restoreModelState
	PtrIsStationaryState
	isStationaryState
	PtrObserveState
	observeState
	FinishMode
	setFinishMode
	getFinishMode
	setDeferredReactionsMode
	areDeferredReactionsEnabled
	setWTime
	getWTime
	setFindFirstSeriesOnly
	isFindFirstSeriesOnly
	setFindFirstSeriesOnlyBound
	getFindFirstSeriesOnlyBound
	‘–t’ standard parameter
	‘–tc’ standard parameter
	‘–tt’ standard parameter
	‘–nt’ standard parameter
	‘–uerr’ standard parameter
	‘–uend’ standard parameter
	‘--trace-accidental’ standard parameter
	‘--find-first-series-only’ standard parameter

	Tracing services
	Tracing control
	addTraceToConsole
	removeTraceToConsole
	addTraceToFile
	removeTraceToFile
	setTraceAccidental
	setTraceEncoding

	Message tracing
	traceUserInfo
	traceFormattedUserInfo

	Deferred reactions registration services
	Interaction channels
	ChannelID
	WrongChannel
	UniqueChannel
	getChannelID
	releaseChannelID

	Interactions registrar
	setStimulusChannel
	getStimulusChannel
	registerReaction
	registerReactionWithTimeMark
	registerReactionWithTimeInterval
	registerWrongReaction
	registerStimulusWithTimeInterval

	Catcher functions registering service
	ReactionCatcherFuncType
	registerReactionCatcher
	unregisterReactionCatcher
	unregisterReactionCatchers

	Library of specification data types
	Standard functions
	Specification reference creation function
	Specification reference data type function
	Specification reference copying function
	Specification reference comparing functions
	Specification reference stringifying function

	Predefined specification data types
	Char
	Integer и UInteger
	Short и UShort
	Long и ULong
	Float
	Double
	VoidAst
	Unit
	Complex
	String
	List
	Set
	Map

	SeC grammatics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

